102 Results for: "Dialysis Tubing"
MediaKap® and MediaKap® Plus HF Filters, Sterile, Spectrum™ Laboratories
Supplier: Spectrum Laboratories
MediaKap® filters are designed to sterilize and clarify culture medium or buffer solution via a 0.2 µm DynaFibre® membrane.
Expand 6 Items
Multiple Species Recombinant Hep (from Synthetic), BSA (Bovine Serum Albumin)
Supplier: Cloud-Clone
This is a Hep conjugated BSA, General species is sequencing from C12H19NO20S3 with 90 to 100% purity. Lyophilized from PBS, pH 7.4, containing 0.01% SKL, 5% Trehalose with 0.2 mg/ml.
Expand 1 Items
Kemtec® Introduction to Biochemistry 2
Supplier: Ward's Science
A more in-depth biochemical analysis of foods.
Expand 1 Items
AASTY 6-55
Supplier: Cube Biotech
AASTYs (Acrylic acid-co-styrenes) - like AASTY 6-55 - are highly-alternating copolymers, well-suited for generating native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 6-55 gets its name from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general, lighter AASTYs, like 6-55 tend to be more aggressive, while heavier AASTYs, such as 11-45 show higher thermodynamic stability.
The exact composition of AASTY copolymers shows different extraction efficiency, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made by controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.
Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process, we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022
Expand 1 Items
AASTY 11-55
Supplier: Cube Biotech
AASTYs (Acrylic acid-co-styrenes) - like AASTY 11-55 - are highly alternating copolymers, well-suited for generating native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 11-55 is named from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general lighter AASTYs, like 6-45 tend to be more aggressive, while heavier AASTYs, such as 11-55 show higher thermodynamic stability.
The exact composition of AASTY copolymers shows different extraction efficiencies, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made by controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.
Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022
Expand 1 Items
AASTY 11-45
Supplier: Cube Biotech
AASTYs (Acrylic acid-co-styrenes) - like AASTY 11-45 - are highly alternating copolymers, well-suited for the generation of native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 11-45 gets its name from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general lighter AASTYs, like 6-45 tend to be more aggressive, while heavier AASTYs, such as 11-45 show higher thermodynamic stability.
The exact composition of AASTY copolymers shows different extraction efficiency, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made by controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.
Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process, we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022
Expand 1 Items
AASTY 6-50
Supplier: Cube Biotech
AASTYs (Acrylic acid-co-styrenes) - like AASTY 6-50 - are highly-alternating copolymers, well-suited for the generation of native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 6-50 gets its name from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general lighter AASTYs, like 6-50 tend to be more aggressive, while heavier AASTYs, such as 11-45 show higher thermodynamic stability.
The exact composition of AASTY copolymers shows different extraction efficiency, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made using controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.
Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022
Expand 1 Items
Wards® STEM Investigations: Create Your Own Power
Supplier: Ward's Science
Set up an electrochemical cell using a variety of materials.
Expand 1 Items
Anti-Hep Rabbit Polyclonal Antibody
Supplier: Cloud-Clone
Polyclonal Antibody to Heparin (Hep), derived from BSA conjugated Hep, is reactive with General species.
Expand 1 Items
AASTY 6-45
Supplier: Cube Biotech
AASTYs (Acrylic acid-co-styrenes) - like AASTY 6-45 - are highly alternating copolymers, well-suited for generating native lipid nanodiscs. They are a 2022 novel developed series for membrane protein solubilization & stabilization. AASTY 6-45 gets it's name from its molecular weight and Acrylic Acid : Styrene Ratio. These varying ratios of acrylic acid to styrene contribute to the hydrophilic properties of our AASTYs. In general lighter AASTYs, like 6-45 tend to be more aggressive, while heavier AASTYs, such as 11-45 show higher thermodynamic stability.
The exact composition of AASTY copolymers shows different extraction efficiency, depending on the lipid composition of the lipid bilayers being formulated into nanodiscs. As AASTY is made by controlled radical polymerization techniques, the dispersity of polymer molecular weight distribution is low, and the molecular weights are controlled. This means that excess AASTY copolymer can be removed by dialysis after nanodisc formation. Based on previous findings on SMA, it is the expectation that AASTY of different molecular weights will display different rates of nanodisc formation, extraction efficacy, and stability of resulting nanodiscs.
Every membrane protein solubilization needs to undergo a screening process before. The characteristic phospholipid environment surrounding the different membrane proteins in question performs differently well with each polymer. To support you in this process we offer a handy Screening Kit for AASTYs to test them all. Additionally, we recommend the two following publications if you would like to get further information: Smith et al. 2020 & Timcenko et al. 2022
Expand 2 Items
General Species Hep ELISA Kit
Supplier: Cloud-Clone
This assay has high sensitivity and excellent specificity for detecting General species Hep (Heparin). The assay range is from 12.35 to 1000 ng/ml (Competitive kit) with a sensitivity of 4.42 ng/ml. There is no detectable cross-reactivity with other relevant proteins. Activity loss rate and accelerated stability test ect have been conducted to guarantee the best performance of the products after long storage and delivery.
Expand 1 Items
MegaLong™ for High Molecular Weight DNA Isolation, G-Biosciences
Supplier: G-Biosciences
The majority of genomic DNA extraction methods involve numerous physical manipulations, including mixing, pipetting, shaking, binding to resin, elution, which results in sheared DNA that may not be suitable for further analysis.



