127870 Results for: "Blotting"
Anti-GNAI1 Rabbit Polyclonal Antibody
Supplier: Prosci
Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules. They are found as heterotrimers made up of alpha, beta, and gamma subunits. Members of the G protein family have been characterized most extensively on the basis of the alpha subunit, which binds guanine nucleotide, is capable of hydrolyzing GTP, and interacts with specific receptor and effector molecules. The G protein family includes Gs and Gi, the stimulatory and inhibitory GTP-binding regulators of adenylate cyclase; Go, a protein abundant in brain (GNAO1); and transducin-1 (GNAT1) and transducin-2 (GNAT2), proteins involved in phototransduction in retinal rods and cones, respectively.Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules. They are found as heterotrimers made up of alpha, beta, and gamma subunits. Members of the G protein family have been characterized most extensively on the basis of the alpha subunit, which binds guanine nucleotide, is capable of hydrolyzing GTP, and interacts with specific receptor and effector molecules. The G protein family includes Gs (MIM 139320) and Gi, the stimulatory and inhibitory GTP-binding regulators of adenylate cyclase; Go, a protein abundant in brain (GNAO1; MIM 139311); and transducin-1 (GNAT1; MIM 139330) and transducin-2 (GNAT2; MIM 139340), proteins involved in phototransduction in retinal rods and cones, respectively (Sullivan et al., 1986 [PubMed 3092218]; Bray et al., 1987 [PubMed 3110783]). Suki et al. (1987) [PubMed 2440724] concluded that the human genome contains at least 3 nonallelic genes for alpha-i-type subunits of G protein; see, e.g, GNAI2 (MIM 139360), GNAI3 (MIM 139370), and GNAIH (MIM 139180).[supplied by OMIM]. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on alignments. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
Expand 1 Items
Anti-APP Rabbit Polyclonal Antibody
Supplier: Biosensis
FUNCTION: Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1/Tip60 and inhibit Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity. Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. May be involved in copper homeostasis/oxidative stress through copper ion reduction. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. FUNCTION: Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. Rat and mouse beta-amyloid peptides bind only weakly transient metals and have little reducing activity due to substitutions of transient metal chelating residues. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation (By similarity). FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis. SUBUNIT: Binds, via its C-terminus, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1, Numb and Dab1. Binding to Dab1 inhibits its serine phosphorylation. Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains. Associates with microtubules in the presence of ATP and in a kinesin-dependent manner. Interacts, through a C-terminal domain, with GNAO1. Amyloid beta-42 binds CHRNA7 in hippocampal neurons. Beta-amyloid associates with HADH2. TISSUE SPECIFICITY: different isoforms in different tissues: kidney. brain. liver. hippocampus, substania nigra pars compacta and cerebellum. In the cerebellum, all the isoforms are abundantly expressed in Purkinje cells.
Expand 1 Items
Anti-APP Rabbit Polyclonal Antibody
Supplier: Biosensis
FUNCTION: Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1/Tip60 and inhibit Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity. Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. May be involved in copper homeostasis/oxidative stress through copper ion reduction. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. FUNCTION: Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. Rat and mouse beta-amyloid peptides bind only weakly transient metals and have little reducing activity due to substitutions of transient metal chelating residues. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation (By similarity). FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis. SUBUNIT: Binds, via its C-terminus, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1, Numb and Dab1. Binding to Dab1 inhibits its serine phosphorylation. Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains. Associates with microtubules in the presence of ATP and in a kinesin-dependent manner. Interacts, through a C-terminal domain, with GNAO1. Amyloid beta-42 binds CHRNA7 in hippocampal neurons. Beta-amyloid associates with HADH2. TISSUE SPECIFICITY: different isoforms in different tissues: kidney. brain. liver. hippocampus, substania nigra pars compacta and cerebellum. In the cerebellum, all the isoforms are abundantly expressed in Purkinje cells.
Expand 1 Items
TRAzol® RNA Purification Reagent Kit
Supplier: Alkali Scientific
Isolate high-quality RNA efficiently with the TRAzol® RNA purification reagent kit, available in a 100 ml size for versatile research applications.
Expand 1 Items
Anti-SMARCA4 Rabbit Polyclonal Antibody
Supplier: Prosci
Transcriptional coactivator cooperating with nuclear hormone receptors to potentiate transcriptional activation. Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating a calcium-dependent release of a repressor complex and a recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves a release of HDAC1 and recruitment of CREBBP. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues. Also involved in vitamin D-coupled transcription regulation via its association with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor (VDR), which is required for the ligand-bound VDR-mediated transrepression of the CYP27B1 gene. Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1.
Expand 1 Items
Anti-MTA2 Rabbit Polyclonal Antibody
Supplier: Prosci
MTA2 has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling.This gene encodes a protein that has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling. It is closely related to another member of this family, a protein that has been correlated with the metastatic potential of certain carcinomas. These two proteins are so closely related that they share the same types of domains. These domains include two DNA binding domains, a dimerization domain, and a domain commonly found in proteins that methylate DNA. One of the proteins known to be a target protein for this gene product is p53. Deacteylation of p53 is correlated with a loss of growth inhibition in transformed cells supporting a connection between these gene family members and metastasis.This gene encodes a protein that has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling. It is closely related to another member of this family, a protein that has been correlated with the metastatic potential of certain carcinomas. These two proteins are so closely related that they share the same types of domains. These domains include two DNA binding domains, a dimerization domain, and a domain commonly found in proteins that methylate DNA. One of the proteins known to be a target protein for this gene product is p53. Deacteylation of p53 is correlated with a loss of growth inhibition in transformed cells supporting a connection between these gene family members and metastasis. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
Expand 1 Items
Urea ≥99%, white prills, Ultrapure
Supplier: MP Biomedicals
Urea is the principal end product of nitrogen metabolism in most mammals, formed by the enzymatic reactions of the Kreb's cycle.
Urea is a mild agent usually used in the solubilization and denaturation of proteins. It is also useful for renaturing proteins from samples already denatured with 6 M guanidine hydrochloride such as inclusion bodies; and in the extraction of the mitochondrial complex. It is commonly used to solubilize and denature proteins for denaturing isoelectric focusing and two-dimensional electrophoresis and in acetic acid-urea PAGE gels. Urea is used in cell or tissue culture media to increase the osmolality. Urea has also been used as fertilizer because of the easy availability of nitrogen; in animal feeds; it is reacted with aldehydes to make resins and plastics; condensed with malonic ester to form barbituric acid; used in the paper industry to soften cellulose; used as a diuretic; enhances the action of sulfonamides; an antiseptic.
Urea in solution is in equilibrium with ammonium cyanate. The form that reacts with protein amino groups is isocyanic acid. Urea in the presence of heat and protein leads to carbamylation of the proteins. Carbamylation by isocyanic acid interferes with protein characterization because isocyanic acid reacts with the amino terminus of proteins, preventing N-terminal sequencing. Isocyanic acid also reacts with side chains of lysine and arginine residues resulting in a protein that is unsuitable for many enzymatic digests. In addition, carbamylation often leads to confusing results from peptides having unexpected retention times and masses. When performing enzymatic protein digests it is important to remove urea first. Even though some enzymes will tolerate small amounts of urea, the elevated temperature used for most reactions will lead to carbamylation during the course of the digest. The urea can be removed prior to digestion by fast reversed phase chromatography, spin columns, or dialysis.
Dissolve urea in deionized water to the desired concentration.For every 10 ml of solution, add 1 g of Amberlite® IRA-910.Stir for one hour at room temperature
Expand 4 Items
Anti-GST-PI Mouse Monoclonal Antibody
Supplier: Enzo Life Sciences
The GST Family
Glutathione S-transferases (GSTs) are a large multigen family of multifunctional enzymes, which play an important role in detoxification of potentially genotoxic chemicals, by catalyzing the conjugation of glutathione to a large number of hydrophobic and electrophilic compounds, including carcinogens. They also bind to a variety of nonsubstrate ligands. The GSTs are widely distributed in mammalian species and can be grouped into four classes, based on their biochemical, immunological and structural properties: alpha, mu, pi and theta.
GSTs are dimeric, mainly cytosolic, enzymes that have extensive ligand binding properties in addition to their catalytic role in detoxification. A separate microsomal class of GSTs exists which is quite distinct from the cytosolic GSTs, and is designated as "membrane-associated proteins in eicosanoid and glutathione metabolism" (MAPEG). The N-terminal region tends to be better conserved within classes as it includes an important part of the active site.GSTs are believed to play a role in cancer prevention, as the electrophilic compounds that are conjugated to glutathione could otherwise react with and modify cellular components such as DNA, thereby initiating carcinogenesis. On the other hand, GSTs might detoxify chemotherapeutic drugs in cancer cells, thus contributing to drug resistance.
In summary, GSTs are a group of enzymes which are centrally involved in drug metabolism and detoxification. Because of their role in detoxification, they have been implicated in drug sensitivity and resistance. They may also influence mutagenesis and carcinogenesis and thus, increased GST activity may become a useful cancer marker.
Since many GST genes are polymorphic, there has been considerable interest in determining whether particular allelic variants are also associated with an increase of risk for certain diseases.
Glutathione S-transferase-Pi
The GST-Pi class (phase II detoxification enzymes) is the most abundant of the human glutathione S-transferases family, a major group of detoxification enzymes and widely distributed in the human body.
In normal human tissues, the enzymes protect cells against reactions with glutathione and reactive oxygen species by reducing organic hydroperoxides via gluthathione peroxidase activity.
The role of GST-Pi in tumor growth and progression is less well known. It is reported to be variably expressed in breast cancer and is associated with estrogen receptor levels expressed by the tumor. Down-regulation of GST-Pi activity in a study done on a T cell line appears to favor apoptosis and inhibition of GST-Pi function induces apoptosis in rat hepatoma cells.
The importance in cancer research is clear, as GST-Pi has been implicated in protection against apoptosis and also suggested to have a role in jun kinase inhibition.
The majority of human tumor cell lines express significant amounts of class pi GST, which is why it is being investigated as a potential marker for various types of cancer. GST-Pi is thought to be associated with increased resistance to anticancer drugs. GST-Pi expression is under investigation as a prognostic indicator for resistance to chemotherapy and a marker of treatment resistance.
Expand 1 Items
Anti-PSME3 Rabbit Polyclonal Antibody
Supplier: Prosci
The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. The immunoproteasome contains an alternate regulator, referred to as the 11S regulator or PA28, that replaces the 19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator have been identified. PSME3 is the gamma subunit of the 11S regulator. Six gamma subunits combine to form a homohexameric ring.The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. The immunoproteasome contains an alternate regulator, referred to as the 11S regulator or PA28, that replaces the 19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator have been identified. This gene encodes the gamma subunit of the 11S regulator. Six gamma subunits combine to form a homohexameric ring. Two transcript variants encoding different isoforms have been identified.The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. The immunoproteasome contains an alternate regulator, referred to as the 11S regulator or PA28, that replaces the 19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator have been identified. This gene encodes the gamma subunit of the 11S regulator. Six gamma subunits combine to form a homohexameric ring. Two transcript variants encoding different isoforms have been identified.
Expand 1 Items
Anti-INSR Rabbit Polyclonal Antibody
Supplier: Prosci
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. Ref.40 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, Ref.46 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.