127869 Results for: "Blotting"
Anti-IRF7 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction via both the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway. Required during both the early and late phases of the IFN gene induction but is more critical for the late than for the early phase. Exists in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization where along with other coactivators it can activate transcription of the type I IFN and ISG genes. Can also play a role in regulating adaptive immune responses by inducing PSMB9/LMP2 expression, either directly or through induction of IRF1. Binds to the Q promoter (Qp) of EBV nuclear antigen 1 a (EBNA1) and may play a role in the regulation of EBV latency. Can activate distinct gene expression programs in macrophages and regulate the anti-tumor properties of primary macrophages.
Expand 1 Items
Anti-RPL9 Rabbit Polyclonal Antibody
Supplier: Prosci
RPL9 is a ribosomal protein that is a component of the 60S subunit. RPL9 belongs to the L6P family of ribosomal proteins. It is located in the cytoplasm. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome. Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L6P family of ribosomal proteins. It is located in the cytoplasm. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome. Two alternatively spliced transcript variants encoding the same protein have been found for this gene.Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L6P family of ribosomal proteins. It is located in the cytoplasm. As is typical for genes encoding ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the genome. Two alternatively spliced transcript variants encoding the same protein have been found for this gene.
Expand 1 Items
Anti-MMP17 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
The matrix metalloproteinases (MMPs) are a family of at least eighteen secreted and membrane bound zincendopeptidases. Collectively, these enzymes can degrade all the components of the extracellular matrix, including fibrillar and non fibrillar collagens, fibronectin, laminin and basement membrane glycoproteins. In general, a signal peptide, a propeptide, and a catalytic domain containing the highly conserved zinc binding site characterizes the structure of the MMPs. In addition, fibronectin like repeats, a hinge region, and a C terminal hemopexin like domain allow categorization of MMPs into the collagenase, gelatinase, stomelysin and membrane type MMP subfamilies. All MMPs are synthesized as proenzymes, and most of them are secreted from the cells as proenzymes. Thus, the activation of these proenzymes is a critical step that leads to extracellular matrix breakdown. MMPs are considered to play an important role in wound healing, apoptosis, bone elongation, embryo development, uterine involution, angiogenesis and tissue remodeling, and in diseases such as multiple sclerosis, Alzheimer's, malignant gliomas, lupus, arthritis, periodontis, glumerulonephritis, atherosclerosis, tissue ulceration, and in cancer cell invasion and metastasis.MMP17 has been reported to be elevated in several tumor cell lines, and is constituitively produced by some normal cell lines. Treatment of cells with Concanavolin A or the phorbol ester TPA stimulates production of MMP17 in some cell types, and the enzyme can be recovered in cell lysates. Shed forms of MMP17 have also been reported.
Expand 1 Items
Anti-HSPB1 Rabbit Polyclonal Antibody
Supplier: Bioss
The protein encoded by this gene is a dual specificity protein kinase that belongs to the MAP kinase kinase family. This kinase specifically activates MAPK8/JNK1 and MAPK9/JNK2, and this kinase itself is phosphorylated and activated by MAP kinase kinase kinases including MAP3K1/MEKK1, MAP3K2/MEKK2,MAP3K3/MEKK5, and MAP4K2/GCK. This kinase is involved in the signal transduction mediating the cell responses to proinflammatory cytokines, and environmental stresses. Multiple alternatively spliced transcript variants encoding distinct isoforms have been found, but only one transcript variant has been supported and defined. [provided by RefSeq].Hsp27, also referred to as the Estrogen regulated 24K protein and HSP28, is one of several small heat shock proteins (HSP) produced by all organisms studied. Hsp27 synthesis is induced by elevated temperature, as well as estrogen in hormone responsive cells. This protein is involved in stress resistance and actin organization. Interestingly, human HSP27 also shares greater than 50% homology with low molecular weight Drosophila HSP's and mammalian a-crystalline lens protein. Because of the estrogen responsive nature of Hsp27, this protein has been studied extensively in human estrogen responsive tissues such as cervix, endometrium and breast tissue. This work has led to the suggestion that Hsp27 may be a useful marker in classifying various hormone sensitive tumors.
Expand 1 Items
Anti-MMP8 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Matrix Metalloproteinase 8 (MMP8) is also known as neutrophil collagenase and collagenase 2. MMP8 degrades fibrillar collagens types I, II, III, aggrecan, serpins and alpha 2 macroglobulin. All collagenases cleave fibrillar collagens at one specific site resulting in generation of N terminal three quarter and C terminal one quarter fragments, which then denature to gelatin at body temperature. The substrate specificity of collagenases is variable: MMP1 degrades type III collagen more efficiently than type I or type II collagen, whereas MMP8 is more potent in degrading type I collagen than type III or type II collagen. MMP13, in turn degrades type II collagen 6 fold more efficiently than type I and type II collagens and displays almost 50 fold stronger gelatinolytic activity than MMP1 and MMP8. MMP8 is very similar to MMP1, sharing 57 % amino acid identity. Most cell types do not produce MMP8. Until recently, it was thought that MMP8 was produced exclusively by neutrophils, but it has also been detected in other cell types including arthritic chondrocytes and gingival fibroblasts. The human MMP8 gene has the chromosomal location of 11q22.2-22.3. MMP8 is heavily glycosylated, and the zymogen has a mass of 85 Kd. The zymogen is quickly activated to the 64 Kd form, and this breaks down to a cascade of active forms.
Expand 1 Items
Anti-PHF1 Rabbit Polyclonal Antibody
Supplier: Prosci
PHF1 has significant sequence similarity with Drosophila Polycomblike. It contains a zinc finger-like PHD (plant homeodomain) finger which is distinct from other classes of zinc finger motifs and which shows the typical Cys4-His-Cys3 arrangement. PHD finger genes are thought to belong to a diverse group of transcriptional regulators possibly affecting eukaryotic gene expression by influencing chromatin structure. This gene encodes a protein with significant sequence similarity to Drosophila Polycomblike. The encoded protein contains a zinc finger-like PHD (plant homeodomain) finger which is distinct from other classes of zinc finger motifs and which shows the typical Cys4-His-Cys3 arrangement. PHD finger genes are thought to belong to a diverse group of transcriptional regulators possibly affecting eukaryotic gene expression by influencing chromatin structure. Two transcript variants have been found for this gene.This gene encodes a protein with significant sequence similarity to Drosophila Polycomblike. The encoded protein contains a zinc finger-like PHD (plant homeodomain) finger which is distinct from other classes of zinc finger motifs and which shows the typical Cys4-His-Cys3 arrangement. PHD finger genes are thought to belong to a diverse group of transcriptional regulators possibly affecting eukaryotic gene expression by influencing chromatin structure. Two transcript variants have been found for this gene.
Expand 1 Items
Anti-PHF1 Rabbit Polyclonal Antibody
Supplier: Prosci
PHF1 has significant sequence similarity with Drosophila Polycomblike. It contains a zinc finger-like PHD (plant homeodomain) finger which is distinct from other classes of zinc finger motifs and which shows the typical Cys4-His-Cys3 arrangement. PHD finger genes are thought to belong to a diverse group of transcriptional regulators possibly affecting eukaryotic gene expression by influencing chromatin structure. This gene encodes a protein with significant sequence similarity to Drosophila Polycomblike. The encoded protein contains a zinc finger-like PHD (plant homeodomain) finger which is distinct from other classes of zinc finger motifs and which shows the typical Cys4-His-Cys3 arrangement. PHD finger genes are thought to belong to a diverse group of transcriptional regulators possibly affecting eukaryotic gene expression by influencing chromatin structure. Two transcript variants have been found for this gene.This gene encodes a protein with significant sequence similarity to Drosophila Polycomblike. The encoded protein contains a zinc finger-like PHD (plant homeodomain) finger which is distinct from other classes of zinc finger motifs and which shows the typical Cys4-His-Cys3 arrangement. PHD finger genes are thought to belong to a diverse group of transcriptional regulators possibly affecting eukaryotic gene expression by influencing chromatin structure. Two transcript variants have been found for this gene.
Expand 1 Items
Anti-ACTN2 Rabbit Polyclonal Antibody
Supplier: Prosci
The alpha-actinins are a multigene family of four actin-binding proteins related to dystrophin. The two skeletal muscle isoforms of alpha-actinin (ACTN2 and ACTN3) are major structural components of the Z-line involved in anchoring the actin-containing thin filaments. In humans, ACTN2 is expressed in all muscle fibres, while ACTN3 expression is restricted to a subset of type 2 fibres. Murine Actn2 and Actn3 are differentially expressed, spatially and temporally, during embryonic development and, in contrast to humans, alpha-actinin-2 expression does not completely overlap alpha-actinin-3 in postnatal skeletal muscle, suggesting independent function.Alpha actinins belong to the spectrin gene superfamily which represents a diverse group of cytoskeletal proteins, including the alpha and beta spectrins and dystrophins. Alpha actinin is an actin-binding protein with multiple roles in different cell types. In nonmuscle cells, the cytoskeletal isoform is found along microfilament bundles and adherens-type junctions, where it is involved in binding actin to the membrane. In contrast, skeletal, cardiac, and smooth muscle isoforms are localized to the Z-disc and analogous dense bodies, where they help anchor the myofibrillar actin filaments. This gene encodes a muscle-specific, alpha actinin isoform that is expressed in both skeletal and cardiac muscles. Transcript variants resulting from the use of multiple poly_A sites have been observed.
Expand 1 Items
Anti-FBXL5 Rabbit Polyclonal Antibody
Supplier: Prosci
FBXL5 is a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. FBXL5 belongs to the Fbls class and, in addition to an F-box, contains several tandem leucine-rich repeats.This gene encodes a member of the F-box protein family which is characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which function in phosphorylation-dependent ubiquitination. The F-box proteins are divided into 3 classes: Fbws containing WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs containing either different protein-protein interaction modules or no recognizable motifs. The protein encoded by this gene belongs to the Fbls class and, in addition to an F-box, contains several tandem leucine-rich repeats. Alternative splicing of this gene generates 2 transcript variants.
Expand 1 Items
Anti-DAPK1 Rabbit Polyclonal Antibody
Supplier: Bioss
Calcium/calmodulin-dependent serine/threonine kinase involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. Regulates both type I apoptotic and type II autophagic cell deaths signal, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles. Phosphorylates PIN1 resulting in inhibition of its catalytic activity, nuclear localization, and cellular function. Phosphorylates TPM1, enhancing stress fiber formation in endothelial cells. Phosphorylates STX1A and significantly decreases its binding to STXBP1. Phosphorylates PRKD1 and regulates JNK signaling by binding and activating PRKD1 under oxidative stress. Phosphorylates BECN1, reducing its interaction with BCL2 and BCL2L1 and promoting the induction of autophagy. Phosphorylates TSC2, disrupting the TSC1-TSC2 complex and stimulating mTORC1 activity in a growth factor-dependent pathway. Phosphorylates RPS6, MYL9 and DAPK3. Acts as a signaling amplifier of NMDA receptors at extrasynaptic sites for mediating brain damage in stroke. Cerebral ischemia recruits DAPK1 into the NMDA receptor complex and it phosphorylates GRINB at Ser-133 inducing injurious Ca(2+) influx through NMDA receptor channels, resulting in an irreversible neuronal death. Required together with DAPK3 for phosphorylation of RPL13A upon interferon-gamma activation which is causing RPL13A involvement in transcript-selective translation inhibition. Isoform 2 cannot induce apoptosis but can induce membrane blebbing.
Expand 1 Items
Anti-MSK1/2 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
MSK1 is a mitogen and stress activated protein kinase 1 which belongs to the AGC family of kinases and is related in structure to the ribosomal p70 S6 kinase subfamily. MSK1 can be activated by ERK1/2 and SAPK2/p38 MAP kinase. It is also known to be required for the phosphorylation of CREB, ATF1 H3 and HMG14 in response to mitogen and stress. Similar to RSK, MSK1 contains two kinase domains (N term and a C term). Once phosphorylated on Thr581 and Ser360 by ERK1/2 and SAPK2/p38, MSK1 autophosphorylate on at least 5 sites. Of these autophosphorylation sites Ser212 and Ser376 get phosphorylated by the C terminal kinase domain of MSK1 which is essential for the catalytic activity of the N terminal kinase domain. MSK2 plays an essential role in the control of RELA transcriptional activity in response to TNF. Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN. May also phosphorylate 'Ser-28' of histone H3. Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines. Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors.
Expand 1 Items
Anti-SRC Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c-Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c-Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr -->Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.
Expand 1 Items
Anti-L1 Mouse Monoclonal Antibody [clone: CamVir-1]
Supplier: Prosci
Reacts with a protein of 57kDa, identified as the L1 protein of human papilloma virus type 16 (HPV-16). Forms an icosahedral capsid with a T=7 symmetry and a 50 nm diameter. The capsid is composed of 72 pentamers linked to each other by disulfide bonds and associated with L2 proteins. Binds to heparan sulfate proteoglycans on the basement membrane to provide initial virion attachment to target cells. Basement membrane is exposed only after epithelium trauma. Additionally, the alpha6 integrin complexed with either beta1 or beta4 integrin has been proposed to act as a coreceptor recognized by L1. Once attached, integrin complexed with beta4 integrin has been proposed to act as a coreceptor recognized by L1. Once attached, the virion enters the host cell via clathrin-mediated endocytosis and the genomic DNA is released to the host nucleus. The virion assembly takes place within the cell nucleus. Encapsulates the genomic DNA together with protein L2. [UniProt]
The antibody reacts very strongly with formalin-fixed, paraffin-embedded tissues containing HPV-16 or -33; very weak reactions were occasionally observed with biopsy specimens or smears containing HPV-6 or HPV-11. It cross-reacts with HPV37.
Expand 1 Items
Anti-PINK1 Mouse Monoclonal Antibody [Clone: S4-15]
Supplier: Rockland Immunochemical
PINK1 (PTEN induced putative kinase 1) is a mitochondrial serine/threonine kinase which maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, potentially by phosphorylating mitochondrial proteins, and is involved in the clearance of damaged mitochondria via selective autophagy (mitophagy). PINK1 is synthesized as a 63 kD protein which undergoes proteolyt processing to generate at least two cleaved forms (55 kD and 42 kD). PINK1 and its substrates have been found in the cytosol as well as in different sub-mitochondrial compartments, and according to the recent reports; PINK1 may be targeted to OMM (outer mitochondrial membrane) with its kinase domain facing the cytosol, providing a possible explanation for the observed physical interaction with the cytosolic E3 ubiquitin ligase Parkin.
Defective PINK1 may cause alterations in processing, stability, localization and activity as well as binding to substrates/interaction-partners which ultimately leads to differential effects on mitochondrial function and morphology. Mutations in PINK1 are linked to autosomal recessive early onset Parkinson's disease, and are associated with loss of protective function, mitochondrial dysfunction, aggregation of alpha-synuclein, as well as proteasome dysfunction. Areas of interest and use for researchers include Neuroscience, mitochondrial function, and CDK-mediated phosphorylation pathways.
Expand 1 Items
Anti-NR1H2 Rabbit Polyclonal Antibody
Supplier: Prosci
The LX receptors (LXRs) were originally identified as orphan members of the nuclear receptor superfamily because their ligands were unknown. Like other receptors in the family, LXRs heterodimerize with retinoid X receptor and bind to specific response elements (LXREs) characterized by direct repeats separated by 4 nucleotides. Two genes, alpha (LXRA) and beta, are known to encode LXR proteins.The LX receptors (LXRs) were originally identified as orphan members of the nuclear receptor superfamily because their ligands were unknown. Like other receptors in the family, LXRs heterodimerize with retinoid X receptor (see MIM 180245) and bind to specific response elements (LXREs) characterized by direct repeats separated by 4 nucleotides. Two genes, alpha (LXRA, MIM 602423) and beta, are known to encode LXR proteins.The LX receptors (LXRs) were originally identified as orphan members of the nuclear receptor superfamily because their ligands were unknown. Like other receptors in the family, LXRs heterodimerize with retinoid X receptor (see MIM 180245) and bind to specific response elements (LXREs) characterized by direct repeats separated by 4 nucleotides. Two genes, alpha (LXRA, MIM 602423) and beta, are known to encode LXR proteins (Song et al., 1995).[supplied by OMIM].
Expand 1 Items
Anti-ADAMTS18 Rabbit Polyclonal Antibody
Supplier: Prosci
ADAMTS18 is a member of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) protein family. ADAMTS family members share several distinct protein modules, including a propeptide region, a metalloproteinase domain, a disintegrin-like domain, and a thrombospondin type 1 (TS) motif. Individual members of this family differ in the number of C-terminal TS motifs, and some have unique C-terminal domains. The protein has a high sequence similarity to the protein encoded by gene ADAMTS16, another family member. It is thought to function as a tumor suppressor. Alternatively spliced transcript variants have been identified, but their biological validity has not been determined. This gene encodes a member of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) protein family. ADAMTS family members share several distinct protein modules, including a propeptide region, a metalloproteinase domain, a disintegrin-like domain, and a thrombospondin type 1 (TS) motif. Individual members of this family differ in the number of C-terminal TS motifs, and some have unique C-terminal domains. The protein encoded by this gene has a high sequence similarity to the protein encoded by gene ADAMTS16, another family member. It is thought to function as a tumor suppressor. Alternatively spliced transcript variants have been identified, but their biological validity has not been determined.
Expand 1 Items
E.Z.N.A.® Blood DNA Kit, Omega Bio-tek
Supplier: Omega Bio-Tek
The E.Z.N.A.® Blood DNA Kit provides rapid total DNA isolation from 1–250 µL of fresh and frozen anticoagulated whole blood
Expand 1 Items
Anti-VASP Mouse Monoclonal Antibody
Supplier: Enzo Life Sciences
VASP (vasodilator stimulated phosphoprotein) is a proline-rich protein substrate of cAMP- and cGMP-dependent protein kinases. Phosphorylation of VASP at Ser-157 causes a mobility shift in SDS gel electrophoresis from 46 to 50 kDa, which has been used as a convenient marker to monitor cyclic nucleotide-dependent protein kinase activity. VASP is the founding member of the Ena-VASP protein family, comprising the Drosophila protein Enabled (Ena), its mouse homologue Mena (mammalian Enabled), and mouse EVL (Ena-VASP-like protein). With these proteins VASP shares a conserved overall domain organization:
a) the conserved N-terminal Ena-VASP homology domain 1 (EVH1), which mediates binding to a proline-rich motif,
b) a more divergent proline-rich central domain (which is responsible for profilin binding), and
c) a conserved C-terminal EVH2 domain.
Particularly high VASP levels are present in platelets, although VASP is expressed in a wide variety of cell types and tissues. In cultured cells, VASP is associated with focal adhesions, cell-cell contacts, microfilaments, and highly dynamic membrane regions. From in vitro binding data VASP has been suggested to link profilin to zyxin, vinculin, and the Listeria spp. surface protein ActA, respectively. Functional evidence indicates that VASP is a crucial factor involved in the enhancement of actin filament formation and the actin-dependent motility of intracellular bacterial pathogens.
Expand 1 Items
Anti-MAPT Rabbit Polyclonal Antibody
Supplier: Enzo Life Sciences
Tau is the principal microtubule-associated protein located in axons in the nervous system where it participates in events including the elongation, stabilisation and bundling of microtubules. The tau family consists of six isoforms identified by the insertion of three or four partial repeats of 30-31 amino acids in the C-terminal region. Subcellular fractionation studies have revealed tau to be associated with the membrane fraction, as well as with the cytoskeletal fraction and there is some evidence that the N-terminal domain of tau may be responsible for membrane binding as well as interaction with other cellular components. Tau extracted from human fetal and neonatal brains is moderately phosphorylated with 5-9 phosphorylated serine/threonine residues per molecule. Normal adult human brain tau shows a marked reduction in phosphorylation, but in certain neurodegenerative diseases (tauopathies) tau becomes hyperphosphorylated (6-15 phosphates per tau molecule have been identified) and associates to form filamentous aggregates. In Alzheimer’s disease (AD) hyperphosphorylated tau polymerises to form a mixture of paired helical filaments (PHF) and straight filaments which accumulate and contribute to the formation of neurofibrillary tangles - one of the characteristic features of AD. It was reported in 1998 that tau could be tyrosine phosphorylated when co-transfected with the src-family protein tyrosine kinase fyn. In 2004 the same group, using phospho-specific antibodies, reported that fyn phosphorylated Tyr18 of brain tau at an early developmental stage in mice, but that tyrosine phosphorylated tau was undetectable in adult mice. However, they also showed that PHF preparations were reactive to the tau-pTyr18-specific antibodies, implicating a role for fyn – and possibly other tyrosine kinases - in the neurodegenerative process.
Expand 1 Items
Anti-BCKDHA Rabbit Polyclonal Antibody
Supplier: Prosci
The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO2. It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3).The BCKDHA gene encodes the E1-alpha subunit of the branched-chain alpha-keto acid (BCAA) dehydrogenase complex (BCKD; EC 1.2.4.4), an inner-mitochondrial enzyme complex that catalyzes the oxidative decarboxylation of the branched-chain alpha-ketoacids derived from isoleucine, leucine, and valine. This reaction is the second major step in the catabolism of the branched-chain amino acids (Wynn et al., 1998 [PubMed 9582350]). The BCKD complex consists of 3 catalytic components: a heterotetrameric (alpha2-beta2) branched-chain alpha-keto acid decarboxylase (E1), a homo-24-meric dihydrolipoyl transacylase (E2; MIM 248610), and a homodimeric dihydrolipoamide dehydrogenase (E3; MIM 238331). E1 is a thiamine pyrophosphate (TPP)-dependent enzyme. The reaction is irreversible and constitutes the first committed step in BCAA oxidation. The BCKDHB gene (MIM 248611) encodes the beta subunit of E1. The complex also contains 2 regulatory enzymes, a kinase and a phosphorylase.
Expand 1 Items
Anti-gamma synuclein Sheep Polyclonal Antibody
Supplier: Biosensis
Gamma synuclein belongs to the synuclein family which are believed to be involve in the pathogenesis of neurodegenerative diseases. High levels of gamma synuclein have been identified in andvanced breast carcinomas suggesting a correlation between gamma synuclein overexpression and breast tumor development. Gama synuclein plays a role in neurofilament network integrity. May be involved in modulating axonal architecture during development and in the adult. In vitro, increases the susceptibility of neurofilament-H to calcium-dependent proteases. May also function in modulating the keratin network in skin. Activates the MAPK and Elk-1 signal transduction pathway. SUBUNIT: May be a centrosome-associated protein. SUBCELLULAR LOCATION: Cytoplasm; perinuclear region. Centrosome. Spindle. Associated with centrosomes in several interphase cells. In mitotic cells, localized to the poles of the spindle. TISSUE SPECIFICITY: Highly expressed in brain, particularly in the substantia nigra. Also expressed in the corpus callosum, heart, skeletal muscle, ovary, testis, colon and spleen. Weak expression in pancreas, kidney and lung. PTM: Phosphorylated. Phosphorylation by GRK5 appears to occur on residues distinct from the residue phosphorylated by other kinases. DISEASE: Brain iron accumulation type 1 (NBIA1, also called Hallervorden-Spatz syndrome), a rare neuroaxonal dystrophy, is histologically characterized by axonal spheroids, iron deposition, Lewy body (LB)-like intraneuronal inclusions, glial inclusions and neurofibrillary tangles. SNCG is found in spheroids but not in inclusions.
Expand 1 Items
Anti-TRKA Rabbit Polyclonal Antibody
Supplier: Bioss
Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors. Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.
Expand 1 Items
Anti-CBX3 Rabbit Polyclonal Antibody
Supplier: Prosci
At the nuclear envelope, the nuclear lamina and heterochromatin are adjacent to the inner nuclear membrane. CBX3 binds DNA and is a component of heterochromatin. CBX3 also can bind lamin B receptor, an integral membrane protein found in the inner nuclear membrane. The dual binding functions of CBX3 may explain the association of heterochromatin with the inner nuclear membrane.At the nuclear envelope, the nuclear lamina and heterochromatin are adjacent to the inner nuclear membrane. The protein encoded by this gene binds DNA and is a component of heterochromatin. This protein also can bind lamin B receptor, an integral membrane protein found in the inner nuclear membrane. The dual binding functions of the encoded protein may explain the association of heterochromatin with the inner nuclear membrane. Two transcript variants encoding the same protein but differing in the 5' UTR, have been found for this gene.At the nuclear envelope, the nuclear lamina and heterochromatin are adjacent to the inner nuclear membrane. The protein encoded by this gene binds DNA and is a component of heterochromatin. This protein also can bind lamin B receptor, an integral membrane protein found in the inner nuclear membrane. The dual binding functions of the encoded protein may explain the association of heterochromatin with the inner nuclear membrane. Two transcript variants encoding the same protein but differing in the 5' UTR, have been found for this gene.
Expand 1 Items
Anti-ACVR1B Rabbit Polyclonal Antibody
Supplier: Bioss
Transmembrane serine/threonine kinase activin type-1 receptor forming an activin receptor complex with activin receptor type-2 (ACVR2A or ACVR2B). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating a many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, type-2 receptors (ACVR2A and/or ACVR2B) act as a primary activin receptors whereas the type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor such as ACVR1B. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor. ACVR1B also phosphorylates TDP2.
Expand 1 Items
Anti-EPHA4 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Receptor tyrosine kinase which binds membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous, it has the unique property among Eph receptors to bind and to be physiologically activated by both GPI-anchored ephrin-A and transmembrane ephrin-B ligands including EFNA1 and EFNB3. Upon activation by ephrin ligands, modulates cell morphology and integrin-dependent cell adhesion through regulation of the Rac, Rap and Rho GTPases activity. Plays an important role in the development of the nervous system controlling different steps of axonal guidance including the establishment of the corticospinal projections. May also control the segregation of motor and sensory axons during neuromuscular circuit development. In addition to its role in axonal guidance plays a role in synaptic plasticity. Activated by EFNA1 phosphorylates CDK5 at 'Tyr-15' which in turn phosphorylates NGEF regulating RHOA and dendritic spine morphogenesis. In the nervous system, plays also a role in repair after injury preventing axonal regeneration and in angiogenesis playing a role in central nervous system vascular formation. Additionally, its promiscuity makes it available to participate in a variety of cell-cell signaling regulating for instance the development of the thymic epithelium.
Expand 1 Items
Anti-CSTB Rabbit Polyclonal Antibody
Supplier: Prosci
CSTB is a stefin that functions as an intracellular thiol protease inhibitor. The protein is able to form a dimer stabilized by noncovalent forces, inhibiting papain and cathepsins l, h and b. The protein is thought to play a role in protecting against the proteases leaking from lysosomes. Evidence indicates that mutations in CSTB gene are responsible for the primary defects in patients with progressive myoclonic epilepsy a stefin that functions as an intracellular thiol protease inhibitor. The protein is able to form a dimer stabilized by noncovalent forces, inhibiting papain and cathepsins l, h and b. The protein is thought to play a role in protecting against the proteases leaking from lysosomes. Evidence indicates that mutations in this gene are responsible for the primary defects in patients with progressive myoclonic epilepsy.The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. Some of the members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity. There are three inhibitory families in the superfamily, including the type 1 cystatins (stefins), type 2 cystatins and kininogens. This gene encodes a stefin that functions as an intracellular thiol protease inhibitor. The protein is able to form a dimer stabilized by noncovalent forces, inhibiting papain and cathepsins l, h and b. The protein is thought to play a role in protecting against the proteases leaking from lysosomes. Evidence indicates that mutations in this gene are responsible for the primary defects in patients with progressive myoclonic epilepsy (EPM1).
Expand 1 Items
Anti-TGF beta 2 Propeptide Rabbit Polyclonal Antibody
Supplier: Bioss
Transforming Growth Factor (TGF) betas mediate many cell to cell interactions that occur during embryonic development. Three TGF betas have been identified in mammals. TGF beta 1, TGF beta 2 and TGF beta 3 are each synthesized as precursor proteins that are very similar in that each is cleaved to yield a 112 amino acid polypeptide that remains associated with the latent portion of the molecule. The TGF beta polypeptides are multifunctional; capable of influencing cell proliferation, differentiation, and other functions in a wide range of cell types. Transformed, as well as nonneoplastic tissues, release transforming growth factors; and essentially all mammalian cells possess a specific TGF receptor. The multi modal nature of TGF beta is seen in its ability to stimulate or inhibit cellular proliferation. In general, cells of mesenchymal origin appear to be stimulated by TGF beta whereas cells of epithelial or neuroectodermal origin are inhibited by the peptide. TGF beta 1, TGF beta 2, and TGF beta 1.2 appear to be equivalent in biological activity, although there does appear to be differences in binding to certain types of receptors. TGF beta 2 is produced by many cell types and has been found in the highest concentration in porcine platelets and mammalian bone. Latent TGF beta 2 is the prominent isoform found in body fluids such as amniotic fluid, breast milk, and the aqueous and vitreous humor of the eye.
Expand 1 Items
Anti-SLC3A2 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Required for the function of light chain amino-acid transporters. Involved in sodium-independent, high-affinity transport of large neutral amino acids such as phenylalanine, tyrosine, leucine, arginine and tryptophan. Involved in guiding and targeting of LAT1 and LAT2 to the plasma membrane. When associated with SLC7A6 or SLC7A7 acts as an arginine/glutamine exchanger, following an antiport mechanism for amino acid transport, influencing arginine release in exchange for extracellular amino acids. Plays a role in nitric oxide synthesis in human umbilical vein endothelial cells (HUVECs) via transport of L-arginine. Required for normal and neoplastic cell growth. When associated with SLC7A5/LAT1, is also involved in the transport of L-DOPA across the blood-brain barrier, and that of thyroid hormones triiodothyronine (T3) and thyroxine (T4) across the cell membrane in tissues such as placenta. Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity. When associated with SLC7A5 or SLC7A8, involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane. Together with ICAM1, regulates the transport activity LAT2 in polarized intestinal cells, by generating and delivering intracellular signals. When associated with SLC7A5, plays an important role in transporting L-leucine from the circulating blood to the retina across the inner blood-retinal barrier.
Expand 1 Items
Anti-TRF2 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes. In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo. Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair. Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo. Preferentially binds to positive supercoiled DNA. Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology. Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length.
Expand 1 Items
Anti-GPR71 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))
Supplier: Bioss
The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.