Order Entry
United States
Orders LinkContactUsLinkComponent
127867 results for "Blotting"

127867 Results for: "Blotting"

Anti-SERPINA12 Rabbit Polyclonal Antibody

Supplier: Bioss

May modulates insulin action conceivably only in the presence of its yet undefined target proteases in white adipose tissues.Serpins are the largest and most diverse family of protease inhibitors. Most serpins control proteolytic cascades, certain serpins do not inhibit enzymes, but instead perform diverse functions such as storage (ovalbumin, in egg white), hormone carriage proteins (thyroxine-binding globulin, cortisol-binding globulin) and tumor suppressor genes (maspin). Most inhibitory serpins target chymotrypsin-like serine proteases. These enzymes are defined by the presence of a nucleophilic serine residue in their catalytic site. Some serpins inhibit other classes of protease. A number of such serpins have been shown to target cysteine proteases. These enzymes differ from serine proteases in that they are defined by the presence of a nucleophilic cysteine residue, rather than a serine residue, in their catalytic site. SerpinA12, also known as OL-64, Visceral adipose tissue-derived serine protease inhibitor, Vaspin, Visceral adipose-specific serpin and SERPINA12, is a secreted protein which belongs to the serpin family. SerpinA12 / Vaspin is expressed in visceral adipose tissues. It may modulates insulin action conceivably only in the presence of its yet undefined target proteases in white adipose tissues. SerpinA12 / Vaspin may be the compensatory molecule in the pathogenesis of metabolic syndrome and SerpinA12 / Vaspin recombinant protein or vaspin-mimicking agents such as vaspin analogs, or small molecule agents may be the link to drug discovery and development.

Expand 1 Items
Loading...

Anti-SLC27A6 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Acyl-coenzyme A synthetases (ACSs) are a large family of related enzymes known to catalyze the fundamental initial reaction in fatty acid metabolism. The ACS family is roughly characterized based on fatty acid chain length preference amongst different members. The nomenclature in the ACS family reflects this relationship and includes short-chain ACS (ACSS), medium-chain ACS (ACSM), long-chain ACS (ACSL) and very long-chain ACS (ACSVL). ACSVL family members are capable of activating both long (LCFAs) and very long-chain fatty acids (VLCFAs). There are six members of the human ACSVL subfamily, which have been described as solute carrier family 27A (SLC27A) gene products. They represent a group of evolutionarily conserved fatty acid transport proteins (FATPs) recognized for their role in facilitating translocation of long-chain fatty acids across the plasma membrane. The family nomenclature has recently been unified with their respective acyl-CoA synthetase family designations: ACSVL1 (FATP2), ACSVL2 (FATP6), ACSVL3 (FATP3), ACSVL4 (FATP1), ACSVL5 (FATP4) and ACSVL6 (FATP5). ACSVLs have unique expression patterns and are found in major organs of fatty acid metabolism, such as adipose tissue, liver, heart and kidney. ACSVL2 is a 619 amino acid multi-pass membrane protein. Encoded by a gene that maps to human chromosome 5q23.3, ACSVL2 may function as the predominant fatty acid protein transporter in heart.

Expand 1 Items
Loading...
Anti-TNPO1 Rabbit Polyclonal Antibody

Anti-TNPO1 Rabbit Polyclonal Antibody

Supplier: Proteintech

TNPO1, also named as KPNB2, MIP1, TRN and MIP, belongs to the importin beta family. TNPO1 functions in nuclear protein import as nuclear transport receptor. It serves as receptor for nuclear localization signals (NLS) in cargo substrates. TNPO1 is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. TNPO1 is involved in nuclear import of M9-containing proteins. In vitro, it binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. It is involved in hnRNP A1/A2 nuclear export. TNPO1 mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5. It binds to a beta-like import receptor binding (BIB) domain of RPL23A. In vitro, it mediates nuclear import of H2A, H2B, H3 and H4 histones, and SRP19. In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. The antibody is specific to TNPO1.

Expand 1 Items
Loading...
Anti-IFNB1 Rabbit Polyclonal Antibody

Anti-IFNB1 Rabbit Polyclonal Antibody

Supplier: Bioss

The mammalian type I Inteferons (IFN1) are produced in response to viral infection and other inducers. They are divided into alpha and beta subtypes leukocytes and fibroblasts reactivity. The human IFN alphas are encoded by a family of at least 15 different genes, while IFN beta is the unique member of its subtype. There is approximately 50% amino acid homology between the alpha and beta subtypes. Both IFN subtypes are pleiotropic cytokines and have a similar range of biological activities. Differences between alpha subtypes, and between IFN alpha and betas, are in potency and cell type specific activities. In particular, IFN beta elicits a markedly higher antiproliferation response in some cell types such as, embryonal carcinoma, melanoma and melanocytes than do IFN alphas. Higher potency of IFN beta in treatment of multiple sclerosis and certain cancers has been observed. Type I IFNs signal through binding to a common cell surface receptor. Two chains of the receptor, IFNAR1 and IFNAR2, have been identified. Both chains are necessary for function and in the absence of either there is neither high affinity binding nor biological activity. The intracellular portions of the receptor subunits are bound by tyrosine kinases, Jak1 and Tyk2, members of the Janus kinase family. Upon ligand binding these kinases are activated and phosphorylate members of the STAT family of transcription factors, as well as IFNAR1 and 2.

Expand 1 Items
Loading...
Total RNA Plant Kits, IBI Scientific

Total RNA Plant Kits, IBI Scientific

Supplier: IBI Scientific

The Total RNA Mini and Maxi Kits for Plants provide a simple and fast method to isolate total RNA from plant tissue and cells

Expand 3 Items
Loading...

Anti-TGF beta 2 Propeptide Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Transforming Growth Factor (TGF) betas mediate many cell to cell interactions that occur during embryonic development. Three TGF betas have been identified in mammals. TGF beta 1, TGF beta 2 and TGF beta 3 are each synthesized as precursor proteins that are very similar in that each is cleaved to yield a 112 amino acid polypeptide that remains associated with the latent portion of the molecule. The TGF beta polypeptides are multifunctional; capable of influencing cell proliferation, differentiation, and other functions in a wide range of cell types. Transformed, as well as nonneoplastic tissues, release transforming growth factors; and essentially all mammalian cells possess a specific TGF receptor. The multi modal nature of TGF beta is seen in its ability to stimulate or inhibit cellular proliferation. In general, cells of mesenchymal origin appear to be stimulated by TGF beta whereas cells of epithelial or neuroectodermal origin are inhibited by the peptide. TGF beta 1, TGF beta 2, and TGF beta 1.2 appear to be equivalent in biological activity, although there does appear to be differences in binding to certain types of receptors. TGF beta 2 is produced by many cell types and has been found in the highest concentration in porcine platelets and mammalian bone. Latent TGF beta 2 is the prominent isoform found in body fluids such as amniotic fluid, breast milk, and the aqueous and vitreous humor of the eye.

Expand 1 Items
Loading...

Anti-PINK1 Mouse Monoclonal Antibody (RPE) [Clone: S4-15]

Supplier: Rockland Immunochemical

PINK1 (PTEN induced putative kinase 1) is a mitochondrial serine/threonine kinase which maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, potentially by phosphorylating mitochondrial proteins, and is involved in the clearance of damaged mitochondria via selective autophagy (mitophagy). PINK1 is synthesized as a 63 kD protein which undergoes proteolyt processing to generate at least two cleaved forms (55 kD and 42 kD). PINK1 and its substrates have been found in the cytosol as well as in different sub-mitochondrial compartments, and according to the recent reports; PINK1 may be targeted to OMM (outer mitochondrial membrane) with its kinase domain facing the cytosol, providing a possible explanation for the observed physical interaction with the cytosolic E3 ubiquitin ligase Parkin.
Defective PINK1 may cause alterations in processing, stability, localization and activity as well as binding to substrates/interaction-partners which ultimately leads to differential effects on mitochondrial function and morphology. Mutations in PINK1 are linked to autosomal recessive early onset Parkinson's disease, and are associated with loss of protective function, mitochondrial dysfunction, aggregation of alpha-synuclein, as well as proteasome dysfunction. Areas of interest and use for researchers include Neuroscience, mitochondrial function, and CDK-mediated phosphorylation pathways.

Expand 1 Items
Loading...

Anti-PINK1 Mouse Monoclonal Antibody (PerCP) [Clone: S4-15]

Supplier: Rockland Immunochemical

PINK1 (PTEN induced putative kinase 1) is a mitochondrial serine/threonine kinase which maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, potentially by phosphorylating mitochondrial proteins, and is involved in the clearance of damaged mitochondria via selective autophagy (mitophagy). PINK1 is synthesized as a 63 kD protein which undergoes proteolyt processing to generate at least two cleaved forms (55 kD and 42 kD). PINK1 and its substrates have been found in the cytosol as well as in different sub-mitochondrial compartments, and according to the recent reports; PINK1 may be targeted to OMM (outer mitochondrial membrane) with its kinase domain facing the cytosol, providing a possible explanation for the observed physical interaction with the cytosolic E3 ubiquitin ligase Parkin.
Defective PINK1 may cause alterations in processing, stability, localization and activity as well as binding to substrates/interaction-partners which ultimately leads to differential effects on mitochondrial function and morphology. Mutations in PINK1 are linked to autosomal recessive early onset Parkinson's disease, and are associated with loss of protective function, mitochondrial dysfunction, aggregation of alpha-synuclein, as well as proteasome dysfunction. Areas of interest and use for researchers include Neuroscience, mitochondrial function, and CDK-mediated phosphorylation pathways.

Expand 1 Items
Loading...

Anti-NBN Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Component of the MRE11-RAD50-NBN (MRN complex) which plays a critical role in the cellular response to DNA damage and the maintenance of chromosome integrity. The complex is involved in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity, cell cycle checkpoint control and meiosis. The complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11A. RAD50 may be required to bind DNA ends and hold them in close proximity. NBN modulate the DNA damage signal sensing by recruiting PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites and activating their functions. It can also recruit MRE11 and RAD50 to the proximity of DSBs by an interaction with the histone H2AX. NBN also functions in telomere length maintenance by generating the 3' overhang which serves as a primer for telomerase dependent telomere elongation. NBN is a major player in the control of intra-S-phase checkpoint and there is some evidence that NBN is involved in G1 and G2 checkpoints. The roles of NBS1/MRN encompass DNA damage sensor, signal transducer, and effector, which enable cells to maintain DNA integrity and genomic stability. Forms a complex with RBBP8 to link DNA double-strand break sensing to resection. Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex.

Expand 1 Items
Loading...
Anti-KLKB1 Rabbit Polyclonal Antibody

Anti-KLKB1 Rabbit Polyclonal Antibody

Supplier: Prosci

Plasma prekallikrein is a glycoprotein that participates in the surface-dependent activation of blood coagulation, fibrinolysis, kinin generation and inflammation. It is synthesized in the liver and secreted into the blood as a single polypeptide chain. Plasma prekallikrein is converted to plasma kallikrein by factor XIIa by the cleavage of an internal Arg-Ile bond. Plasma prekallikrein deficiency causes a prolonged activated partial thromboplastin time in patients.Plasma prekallikrein is a glycoprotein that participates in the surface-dependent activation of blood coagulation, fibrinolysis, kinin generation and inflammation. It is synthesized in the liver and secreted into the blood as a single polypeptide chain. Plasma prekallikrein is converted to plasma kallikrein by factor XIIa by the cleavage of an internal Arg-Ile bond. Plasma kallikrein therefore is composed of a heavy chain and a light chain held together by a disulphide bond. The heavy chain originates from the amino-terminal end of the zymogen and contains 4 tandem repeats of 90 or 91 amino acids. Each repeat harbors a novel structure called the apple domain. The heavy chain is required for the surface-dependent pro-coagulant activity of plasma kallikrein. The light chain contains the active site or catalytic domain of the enzyme and is homologous to the trypsin family of serine proteases. Plasma prekallikrein deficiency causes a prolonged activated partial thromboplastin time in patients.

Expand 1 Items
Loading...
Anti-DUT Rabbit Polyclonal Antibody

Anti-DUT Rabbit Polyclonal Antibody

Supplier: Prosci

DUT is an essential enzyme of nucleotide metabolism. This protein forms a ubiquitous, homotetrameric enzyme that hydrolyzes dUTP to dUMP and pyrophosphate. This reaction serves two cellular purposes: providing a precursor (dUMP) for the synthesis of thymine nucleotides needed for DNA replication, and limiting intracellular pools of dUTP. Elevated levels of dUTP lead to increased incorporation of uracil into DNA, which induces extensive excision repair mediated by uracil glycosylase. This repair process, resulting in the removal and reincorporation of dUTP, is self-defeating and leads to DNA fragmentation and cell death.This gene encodes an essential enzyme of nucleotide metabolism. The encoded protein forms a ubiquitous, homotetrameric enzyme that hydrolyzes dUTP to dUMP and pyrophosphate. This reaction serves two cellular purposes: providing a precursor (dUMP) for the synthesis of thymine nucleotides needed for DNA replication, and limiting intracellular pools of dUTP. Elevated levels of dUTP lead to increased incorporation of uracil into DNA, which induces extensive excision repair mediated by uracil glycosylase. This repair process, resulting in the removal and reincorporation of dUTP, is self-defeating and leads to DNA fragmentation and cell death. Alternative splicing of this gene leads to different isoforms that localize to either the mitochondrion or nucleus. A related pseudogene is located on chromosome 19.

Expand 1 Items
Loading...
Anti-PDLIM5 Rabbit Polyclonal Antibody

Anti-PDLIM5 Rabbit Polyclonal Antibody

Supplier: Prosci

PDLIM5 is a LIM domain protein. LIM domains are cysteine-rich double zinc fingers composed of 50 to 60 amino acids that are involved in protein-protein interactions. LIM domain-containing proteins are scaffolds for the formation of multiprotein complexes. The proteins are involved in cytoskeleton organization, cell lineage specification, organ development, and oncogenesis. The encoded protein is also a member of the Enigma class of proteins, a family of proteins that possess a 100-amino acid PDZ domain in the N terminus and 1 to 3 LIM domains in the C terminus. Multiple transcript variants encoding different isoforms have been found for this gene, although not all of them have been fully characterized.The protein encoded by this gene is a LIM domain protein. LIM domains are cysteine-rich double zinc fingers composed of 50 to 60 amino acids that are involved in protein-protein interactions. LIM domain-containing proteins are scaffolds for the formation of multiprotein complexes. The proteins are involved in cytoskeleton organization, cell lineage specification, organ development, and oncogenesis. The encoded protein is also a member of the Enigma class of proteins, a family of proteins that possess a 100-amino acid PDZ domain in the N terminus and 1 to 3 LIM domains in the C terminus. Multiple transcript variants encoding different isoforms have been found for this gene, although not all of them have been fully characterized.

Expand 1 Items
Loading...
Anti-rh GDNF Sheep Polyclonal Antibody

Anti-rh GDNF Sheep Polyclonal Antibody

Supplier: Biosensis

GDNF is a glycosylated, disulfide-bonded homodimer molecule. It was first discovered as a potent survival factor for midbrain dopaminergic neurons and was then shown to rescue these neurons in animal models of Parkinson's disease. GDNF is about 100 times more efficient survival factor for spinal motor neurons than the neurotrophins. FUNCTION: Neurotrophic factor that enhances survival and morphological differentiation of dopaminergic neurons and increases their high-affinity dopamine uptake. SUBUNIT: Homodimer; disulfide-linked. SUBCELLULAR LOCATION: Secreted protein. ALTERNATIVE PRODUCTS: 2 named isoforms produced by alternative splicing. DISEASE: Defects in GDNF may be a cause of Hirschsprung disease (HSCR). In association with mutations of RET gene, defects in GDNF may be involved in Hirschsprung disease. This genetic disorder of neural crest development is characterized by the absence of intramural ganglion cells in the hindgut, often resulting in intestinal obstruction. DISEASE: Defects in GDNF are a cause of congenital central hypoventilation syndrome (CCHS); also known as congenital failure of autonomic control or Ondine curse. CCHS is a rare disorder characterized by abnormal control of respiration in the absence of neuromuscular or lung disease, or an identifiable brain stem lesion. A deficiency in autonomic control of respiration results in inadequate or negligible ventilatory and arousal responses to hypercapnia and hypoxemia. SIMILARITY: Belongs to the TGF-beta family. GDNF subfamily.

Expand 1 Items
Loading...

Anti-ITGB1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Integrins alpha-1/beta-1, alpha-2/beta-1, alpha-10/beta-1 and alpha-11/beta-1 are receptors for collagen. Integrins alpha-1/beta-1 and alpha-2/beta-2 recognize the proline-hydroxylated sequence G-F-P-G-E-R in collagen. Integrins alpha-2/beta-1, alpha-3/beta-1, alpha-4/beta-1, alpha-5/beta-1, alpha-8/beta-1, alpha-10/beta-1, alpha-11/beta-1 and alpha-V/beta-1 are receptors for fibronectin. Alpha-4/beta-1 recognizes one or more domains within the alternatively spliced CS-1 and CS-5 regions of fibronectin. Integrin alpha-5/beta-1 is a receptor for fibrinogen. Integrin alpha-1/beta-1, alpha-2/beta-1, alpha-6/beta-1 and alpha-7/beta-1 are receptors for lamimin. Integrin alpha-4/beta-1 is a receptor for VCAM1. It recognizes the sequence Q-I-D-S in VCAM1. Integrin alpha-9/beta-1 is a receptor for VCAM1, cytotactin and osteopontin. It recognizes the sequence A-E-I-D-G-I-E-L in cytotactin. Integrin alpha-3/beta-1 is a receptor for epiligrin, thrombospondin and CSPG4. Alpha-3/beta-1 may mediate with LGALS3 the stimulation by CSPG4 of endothelial cells migration. Integrin alpha-V/beta-1 is a receptor for vitronectin. Beta-1 integrins recognize the sequence R-G-D in a wide array of ligands. Isoform beta-1B interferes with isoform beta-1A resulting in a dominant negative effect on cell adhesion and migration (in vitro). In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions.

Expand 1 Items
Loading...

Anti-CYTH2 Rabbit Polyclonal Antibody

Supplier: Bioss

The ADP-ribosylation factor (Arf) family comprises a group of structurally and functionally conserved 21 kDa proteins, which are members of the Ras superfamily of regulatory GTP-binding proteins. Arf is involved in intracellular protein traffic to and within the Golgi complex. Arf has a number of disparate activities including maintenance of organelle integrity, assembly of coat proteins, as a co-factor for cholera toxin and as an activator of phospholipase D. Like other small GTPases, Arf is found to be active when bound to GTP and inactive when bound to GDP. Arf’s activation is dependent upon guanine nucleotide exchange factors (GEFs) which increase the rate of exchange of bound GDP with GTP. All GEFs have a highly conserved Sec7 domain. GEF activity lies in the Sec7 domain and this activity has been shown to be inhibited by the fungal metabolite brefeldin-A (BFA). A small group of GEFs which are insensitive to brefeldin-A (BFA) include cytohesin-1 (B2-1), cytohesin-2 (ARNO), cytohesin-3 (ARNO3), and cytohesin-4. All cytohesins function in the cell periphery and contain a pleckstrin homology (PH) domain. The PH domain has been shown to interact with phosphatidylinositol 3,4,5-triphosphate and is believed to promote membrane targeting of the cytohesins. Recruitment of the cytohesins to the membranes can occur in response to tyrosine kinase receptor activation. This response appears to require the activation of phosphatidylinositol 3-kinase (PI 3-kinase).

Expand 1 Items
Loading...
Anti-TARDBP Rabbit Polyclonal Antibody

Anti-TARDBP Rabbit Polyclonal Antibody

Supplier: Prosci

HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), contains an RNA genome that produces a chromosomally integrated DNA during the replicative cycle. Activation of HIV-1 gene expression by the transactivator Tat is dependent on an RNA regulatory element (TAR) located downstream of the transcription initiation site. TARDBP is a transcriptional repressor that binds to chromosomally integrated TAR DNA and represses HIV-1 transcription.HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), contains an RNA genome that produces a chromosomally integrated DNA during the replicative cycle. Activation of HIV-1 gene expression by the transactivator Tat is dependent on an RNA regulatory element (TAR) located downstream of the transcription initiation site. The protein encoded by this gene is a transcriptional repressor that binds to chromosomally integrated TAR DNA and represses HIV-1 transcription. In addition, this protein regulates alternate splicing of the CFTR gene. A similar pseudogene is present on chromosome 20.HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), contains an RNA genome that produces a chromosomally integrated DNA during the replicative cycle. Activation of HIV-1 gene expression by the transactivator Tat is dependent on an RNA regulatory element (TAR) located downstream of the transcription initiation site. The protein encoded by this gene is a transcriptional repressor that binds to chromosomally integrated TAR DNA and represses HIV-1 transcription. In addition, this protein regulates alternate splicing of the CFTR gene. A similar pseudogene is present on chromosome 20.

Expand 1 Items
Loading...
Anti-IRF7 Rabbit Polyclonal Antibody

Anti-IRF7 Rabbit Polyclonal Antibody

Supplier: Bioss

Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction via both the virus-activated, MyD88-independent pathway and the TLR-activated, MyD88-dependent pathway. Required during both the early and late phases of the IFN gene induction but is more critical for the late than for the early phase. Exists in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, becomes phosphorylated by IKBKE and TBK1 kinases. This induces a conformational change, leading to its dimerization and nuclear localization where along with other coactivators it can activate transcription of the type I IFN and ISG genes. Can also play a role in regulating adaptive immune responses by inducing PSMB9/LMP2 expression, either directly or through induction of IRF1. Binds to the Q promoter (Qp) of EBV nuclear antigen 1 a (EBNA1) and may play a role in the regulation of EBV latency. Can activate distinct gene expression programs in macrophages and regulate the anti-tumor properties of primary macrophages.

Expand 1 Items
Loading...
Anti-INA Mouse Monoclonal Antibody [clone: ID2]

Anti-INA Mouse Monoclonal Antibody [clone: ID2]

Supplier: Rockland Immunochemical

Anti-Alpha Internexin antibody recognizes alpha-internexin which is a Class IV intermediate filament originally discovered as it co-purifies with other neurofilament subunits. Alpha-internexin is related to but distinct from the better known neurofilament triplet proteins, NF-L, NF-M and NF-H, having similar protein sequence motifs and a similar intron organization. It is expressed only in neurons and in large amounts early in neuronal development, but is down-regulated in many neurons as development proceeds. Many classes of mature neurons contain alpha-internexin in addition to NF-L, NF-M and NF-H. In some mature neurons alpha-internexin is the only neurofilament subunit expressed. Antibodies to alpha-internexin are therefore unique probes to study and classify neuronal types and follow their processes in sections and in tissue culture. In addition, recent studies show a marked up-regulation of alpha-internexin during neuronal regeneration. The use of antibodies to this protein in the study of brain tumors has not been examined to date, but is likely to be of interest. Recently Cairns et al. used this antibody to show that alpha-internexin is an abundant component of the inclusions of neurofilament inclusion body disease (NFID), a serious human neurodegenerative disorder. The antibody was also used to confirm the presence of circulating auto-antibodies to alpha-internexin in the sera of some patients with endocrine autoimmunity, as well as in some normal individuals. Anti-Alpha Internexin antibody is ideal for investigators involved in Cell Signaling, Neuroscience, Signal Transduction research.

Expand 1 Items
Loading...

Anti-MAP2K6 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. With MAP3K3/MKK3, catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinases p38 MAPK11, MAPK12, MAPK13 and MAPK14 and plays an important role in the regulation of cellular responses to cytokines and all kinds of stresses. Especially, MAP2K3/MKK3 and MAP2K6/MKK6 are both essential for the activation of MAPK11 and MAPK13 induced by environmental stress, whereas MAP2K6/MKK6 is the major MAPK11 activator in response to TNF. MAP2K6/MKK6 also phosphorylates and activates PAK6. The p38 MAP kinase signal transduction pathway leads to direct activation of transcription factors. Nuclear targets of p38 MAP kinase include the transcription factors ATF2 and ELK1. Within the p38 MAPK signal transduction pathway, MAP3K6/MKK6 mediates phosphorylation of STAT4 through MAPK14 activation, and is therefore required for STAT4 activation and STAT4-regulated gene expression in response to IL-12 stimulation. The pathway is also crucial for IL-6-induced SOCS3 expression and down-regulation of IL-6-mediated gene induction; and for IFNG-dependent gene transcription. Has a role in osteoclast differentiation through NF-kappa-B transactivation by TNFSF11, and in endochondral ossification and since SOX9 is another likely downstream target of the p38 MAPK pathway. MAP2K6/MKK6 mediates apoptotic cell death in thymocytes. Acts also as a regulator for melanocytes dendricity, through the modulation of Rho family GTPases.

Expand 1 Items
Loading...

Anti-MEIS2 Rabbit Polyclonal Antibody

Supplier: Bioss

Hox, Pbx and Meis families of transcription factors form heteromeric complexes and bind DNA through specific homeobox domains. Hox proteins are involved in regulating tissue patterning during development, and are also expressed in lineage- and stage-specific patterns during adult hematopoietic differentiation and in leukemias. The Hox proteins, which include paralog groups 1-10, have a low intrinsic binding affinity for DNA and are instead associated into cooperative DNA binding complexes with Pbx or the Pbx- related Meis proteins, which result in an enhanced Hox-DNA binding affinity and an increased selectivity for the binding site. Both Meis1 and Meis2 (also known as Meis-related gene 1 or Mrg1) are members of the TALE (“three amino acid loop extension”) family of homeodomain-containing proteins. In addition to binding with Hox proteins, Meis1 also forms heterodimers with the ubiquitously expressed Pbx proteins, including Pbx1, Pbx2 and Pbx3, and these complexes contain distinct DNA-binding specificities. Like Hox and Pbx proteins, Meis1 is implicated in oncogenesis, as it is overexpressed as a result of adjacent retroviral insertion in BHX-2 myeloid leukemias. Two Meis-related proteins, Meis2 and Meis3 (also designated Mrg1 and Mrg2, respectively), possess largely similar sequence identity with Meis1 and are expressed in normal tissues and myeloid leukemias. In the pancreas, Meis2 preferentially associates with Pbx1, and together they associate with the pancreas-specific homeodomain factor, Pdx1, to repress Pdx1-induced transcriptional activation.

Expand 1 Items
Loading...

Anti-KRIT1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity (By similarity). Negative regulator of angiogenesis. Inhibits endothelial proliferation, apoptosis, migration, lumen formation and sprouting angiogenesis in primary endothelial cells. Promotes AKT phosphorylation in a NOTCH-dependent and independent manner, and inhibits ERK1/2 phosphorylation indirectly through activation of the DELTA-NOTCH cascade. Acts in concert with CDH5 to establish and maintain correct endothelial cell polarity and vascular lumen and these effects are mediated by recruitment and activation of the Par polarity complex and RAP1B. Required for the localization of phosphorylated PRKCZ, PARD3, TIAM1 and RAP1B to the cell junction, and cell junction stabilization. Plays a role in integrin signaling via its interaction with ITGB1BP1; this prevents the interaction between ITGB1 and ITGB1BP1. Microtubule-associated protein that binds to phosphatidylinositol 4,5-bisphosphate (PIP2)-containing membranes in a GTP-bound RAP1-dependent manner. Plays an important role in the maintenance of the intracellular reactive oxygen species (ROS) homeostasis to prevent oxidative cellular damage. Regulates the homeostasis of intracellular ROS through an antioxidant pathway involving FOXO1 and SOD2. Facilitates the down-regulation of cyclin-D1 (CCND1) levels required for cell transition from proliferative growth to quiescence by preventing the accumulation of intracellular ROS through the modulation of FOXO1 and SOD2 levels.

Expand 1 Items
Loading...

Anti-AVPR1B Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Vasopressin (AVP), the antidiuretic hormone, is a cyclic nonpeptide that is involved in the regulation of body fluid osmolality (1-3). AVP mediates its effects through a family of G-protein coupled receptors, the vasopressin receptors type V1a, V2 and V3 (also designated V1b) (1,2). The AVP receptor V1a is responsible for several functions, including blood vessel constriction, liver glycogenolysis and platelet adhesion (3). It is detected as a full length protein and a shorter protein, which results from proteolytic cleavage of its amino terminus (4). The V1a receptor is coupled to Gq/11 protein, which increases the intracellular calcium concentration (3). The human AVP receptor V2 gene maps to chromosome Xq28 and is expressed in lung and kidney (5,6). Mutations in the V2 receptor result in nephrogenic diabetes insipidus (NDI), a rare X-linked disorder characterized by the inability of the kidney to concentrate urine in response to AVP (5,7). The AVP Receptor V2 activates the Gs protein and the cyclic AMP second messenger system (7). The AVP receptor V3 is preferentially expressed in the pituitary and stimulates the release of adrenocorticotropic hormone (ACTH) in response to AVP by mobilizing intracellular calcium stores (8). AVP receptor antagonists may have potential therapeutic effects in hypertension, congestive heart failure, nephrotic syndrome and ACTH-secreting tumors (2).

Expand 1 Items
Loading...

Anti-PIM1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.

Expand 1 Items
Loading...

E.Z.N.A.® Water DNA Kit, Omega Bio-tek

Supplier: Omega Bio-Tek

The E.Z.N.A.® Water DNA Kit is formulated to isolate high-purity cellular DNA from water samples typically containing humic acid and inhibitors of PCR.

Expand 2 Items
Loading...
Anti-XBP1 Rabbit Polyclonal Antibody

Anti-XBP1 Rabbit Polyclonal Antibody

Supplier: Prosci

XBP1 is a transcription factor that regulates MHC class II genes by binding to a promoter element referred to as an X box. XBP1 is a bZIP protein, which was also identified as a cellular transcription factor that binds to an enhancer in the promoter of the T cell leukemia virus type 1 promoter. It may increase expression of viral proteins by acting as the DNA binding partner of a viral transactivator.This gene encodes a transcription factor that regulates MHC class II genes by binding to a promoter element referred to as an X box. This gene product is a bZIP protein, which was also identified as a cellular transcription factor that binds to an enhancer in the promoter of the T cell leukemia virus type 1 promoter. It may increase expression of viral proteins by acting as the DNA binding partner of a viral transactivator. It has been found that upon accumulation of unfolded proteins in the endoplasmic reticulum (ER), the mRNA of this gene is processed to an active form by an unconventional splicing mechanism that is mediated by the endonuclease inositol-requiring enzyme 1 (IRE1). The resulting loss of 26 nt from the spliced mRNA causes a frame-shift and an isoform XBP1 (S), which is the functionally active transcription factor. The isoform encoded by the unspliced mRNA, XBP1 (U), is constitutively expressed, and thought to function as a negative feedback regulator of XBP1 (S), which shuts off transcription of target genes during the recovery phase of ER stress. A pseudogene of XBP1 has been identified and localized to chromosome 5.

Expand 1 Items
Loading...

Anti-SERPINA12 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

May modulates insulin action conceivably only in the presence of its yet undefined target proteases in white adipose tissues.Serpins are the largest and most diverse family of protease inhibitors. Most serpins control proteolytic cascades, certain serpins do not inhibit enzymes, but instead perform diverse functions such as storage (ovalbumin, in egg white), hormone carriage proteins (thyroxine-binding globulin, cortisol-binding globulin) and tumor suppressor genes (maspin). Most inhibitory serpins target chymotrypsin-like serine proteases. These enzymes are defined by the presence of a nucleophilic serine residue in their catalytic site. Some serpins inhibit other classes of protease. A number of such serpins have been shown to target cysteine proteases. These enzymes differ from serine proteases in that they are defined by the presence of a nucleophilic cysteine residue, rather than a serine residue, in their catalytic site. SerpinA12, also known as OL-64, Visceral adipose tissue-derived serine protease inhibitor, Vaspin, Visceral adipose-specific serpin and SERPINA12, is a secreted protein which belongs to the serpin family. SerpinA12 / Vaspin is expressed in visceral adipose tissues. It may modulates insulin action conceivably only in the presence of its yet undefined target proteases in white adipose tissues. SerpinA12 / Vaspin may be the compensatory molecule in the pathogenesis of metabolic syndrome and SerpinA12 / Vaspin recombinant protein or vaspin-mimicking agents such as vaspin analogs, or small molecule agents may be the link to drug discovery and development.

Expand 1 Items
Loading...
Anti-DAB2 Rabbit Polyclonal Antibody

Anti-DAB2 Rabbit Polyclonal Antibody

Supplier: Bioss

Adapter protein that functions as clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containg non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling.

Expand 1 Items
Loading...
Anti-DAB2 Rabbit Polyclonal Antibody

Anti-DAB2 Rabbit Polyclonal Antibody

Supplier: Proteintech

DAB2 is a protein of 770 amino acid residues with a predicted molecular weight of 85.5kDa. This gene was initially named DOC2 (for Differentially expressed in Ovarian Cancer) and is distinct from the DOC2A and DOC2B genes (for double C2-like domains, alpha and beta). Human DAB2 has an overall 83% identify with the mouse p96 protein, a putative mitogen-responsive phosphoprotein; homology is strongest in the amino-terminal end of the protein in a region corresponding to the phosphotyrosine interaction domain (PID), and contains multiple SH3 binding motifs. Chromosomal localization by FISH showed that the DAB2 gene is located on 5p13. The expression of DAB2 is down-regulated or absent in all the carcinoma cell lines examined, including prostate and ovarian carcinoma cell lines. The N-terminal domain of DAB2 interacts with Dishevelled-3 (Dvl-3), a signaling mediator of the Wnt pathway. Ectopic expression of DAB2 attenuates canonical Wnt/catenin-mediated signaling, including accumulation of catenin and cyclin D1 induction. DAB2 suppresses both protein kinase C and peptide growth factor-elicited signal pathways via the Ras-mitogen-activated protein kinase pathway. The proline-rich domain of DAB2 also interacts with proteins containing SH3 domain, such as Src and Fgr. The binding of DAB2 to c-Src resultes in the inactivation of c-Src. All data suggest that DAB2 is a potent tumor suppressor in many cancer types.

Expand 1 Items
Loading...
Anti-PTK2 Rabbit Polyclonal Antibody

Anti-PTK2 Rabbit Polyclonal Antibody

Supplier: Bioss

Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation.

Expand 1 Items
Loading...
Anti-NR4A2 Rabbit Polyclonal Antibody

Anti-NR4A2 Rabbit Polyclonal Antibody

Supplier: Prosci

NR4A2 is a member of the steroid-thyroid hormone-retinoid receptor superfamily. The protein may act as a transcription factor. Mutations in NR4A2 gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson disease, schizophernia, and manic depression. Misregulation of NR4A2 gene may be associated with rheumatoid arthritis.This gene encodes a member of the steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcription factor. Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson disease, schizophernia, and manic depression. Misregulation of this gene may be associated with rheumatoid arthritis. Four transcript variants encoding four distinct isoforms have been identified for this gene. Additional alternate splice variants may exist, but their full length nature has not been determined.This gene encodes a member of the steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcription factor. Mutations in this gene have been associated with disorders related to dopaminergic dysfunction, including Parkinson disease, schizophernia, and manic depression. Misregulation of this gene may be associated with rheumatoid arthritis. Alternatively spliced transcript variants have been described, but their biological validity has not been determined. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Recommended for You