Order Entry
United States
Orders LinkContactUsLinkComponent
127868 results for "Blotting"

127868 Results for: "Blotting"

Anti-NrCAM Mouse Monoclonal Antibody (HRP) [Clone: S364-51]

Supplier: Rockland Immunochemical

Neuronal cell adhesion molecule (NrCAM) is a cell surface protein of the immunoglobulin (Ig) superfamily. NrCAM (also known as Bravo) contains six Ig domains, five fibronectin repeats, a transmembrane region and an intracellular domain. NrCAM is expressed in brain, spinal cord, peripheral nervous system and pancreas. In the spinal cord, NrCAM acts as a ligand for axonin-1 to guide commissural axons across the floor plate. NrCAM also acts as a ligand for F3 to control actin-dependent growth cone motility. NrCAM interacts with neurofascin and may facilitate the clustering of the cystoskeletal protein ankyrin G and the voltage-dependent sodium channel proteins at the node of Ranvier. NrCAM expression may play a role in the severity of certain types of tumors. NrCAM is overexpressed in high-grade astrocytomas, gliomas and glioblastoma tumor tissues. Anti-NrCam is ideal for research in Cancer and Neuroscience.
In the pancreas, NrCAM expression is upregulated in intraductal hyperplasia. Antisense NrCAM reduces the tumorigenic properties of human glioblastoma cells in vitro and slowed tumor growth in vivo. The gene encoding human NrCAM maps to chromosome 7q31.1-q31.2.

Expand 1 Items
Loading...

Anti-NLRP3 Rabbit Polyclonal Antibody

Supplier: Rockland Immunochemical

NLRP3(NLR FAMILY, PYRIN DOMAIN-CONTAINING 3),also known as CIAS1, CRYOPYRIN, NALP3 or PYPAF1, is a protein that in humans is encoded by the NLRP3 (NOD-like receptor family, pryin domain containing 3) gene. The NLRP3 gene encodes a pyrin-like protein expressed predominantly in peripheral blood leukocytes. And the NLRP3 gene is mapped on 1q44. NLRP3 interacts with apoptosis-associated speck-like protein containing a CARD (ASC). The encoded protein may play a role in the regulation of inflammation and apoptosis. Mutation of the NALP3 nucleotide-binding domain reduced ATP binding, CASP1 activation, IL1B production, cell death, macromolecular complex formation, self-association, and association with ASC. Consistent with an essential role for Nlrp3 inflammasomes in antifungal immunity, Gross et al.showed that Nlrp3-deficient mice are hypersusceptible to C. albicans infection. Activation of the NLRP3 inflammasome in response to virus or to RNA was dependent upon lysosomal maturation and reactive oxygen species production in human cells. The NLRP3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance. This antibody is suitable for researchers interested in cancer research.

Expand 1 Items
Loading...
Anti-PCDHGC4 Rabbit Polyclonal Antibody

Anti-PCDHGC4 Rabbit Polyclonal Antibody

Supplier: Prosci

PCDHGC4 is a single-pass type I membrane protein. It contains 6 cadherin domains.PCDHGC4 is a potential calcium-dependent cell-adhesion protein. It may be involved in the establishment and maintenance of specific neuronal connections in the brain.This gene is a member of the protocadherin gamma gene cluster, one of three related clusters tandemly linked on chromosome five. These gene clusters have an immunoglobulin-like organization, suggesting that a novel mechanism may be involved in their regulation and expression. The gamma gene cluster includes 22 genes divided into 3 subfamilies. Subfamily A contains 12 genes, subfamily B contains 7 genes and 2 pseudogenes, and the more distantly related subfamily C contains 3 genes. The tandem array of 22 large, variable region exons are followed by a constant region, containing 3 exons shared by all genes in the cluster. Each variable region exon encodes the extracellular region, which includes 6 cadherin ectodomains and a transmembrane region. The constant region exons encode the common cytoplasmic region. These neural cadherin-like cell adhesion proteins most likely play a critical role in the establishment and function of specific cell-cell connections in the brain. Alternative splicing has been described for the gamma cluster genes.

Expand 1 Items
Loading...
Anti-PAX7 Rabbit Polyclonal Antibody

Anti-PAX7 Rabbit Polyclonal Antibody

Supplier: Prosci

PAX7 is a member of the paired box (PAX) family of transcription factors. Members of this gene family typically contain a paired box domain, an octapeptide, and a paired-type homeodomain. These genes play critical roles during fetal development and cancer growth. The specific function of the paired box gene 7 is unknown but speculated to involve tumor suppression since fusion of this gene with a forkhead domain family member has been associated with alveolar rhabdomyosarcoma. Alternative splicing in this gene has produced two known products but the biological significance of the variants is unknown. This gene is a member of the paired box (PAX) family of transcription factors. Members of this gene family typically contain a paired box domain, an octapeptide, and a paired-type homeodomain. These genes play critical roles during fetal development and cancer growth. The specific function of the paired box 7 gene is unknown but speculated to involve tumor suppression since fusion of this gene with a forkhead domain family member has been associated with alveolar rhabdomyosarcoma. Alternative splicing in this gene has produced two known products but the biological significance of the variants is unknown.

Expand 1 Items
Loading...
Anti-TBK1 Rabbit Polyclonal Antibody

Anti-TBK1 Rabbit Polyclonal Antibody

Supplier: Bioss

Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents. Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB. In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing-complexes. Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus. Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy. Phosphorylates and activates AKT1. Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, wich leads to a negative impact on insulin sensitivity. Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C. Phosphorylates Borna disease virus (BDV) P protein.

Expand 1 Items
Loading...

Anti-SRC Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Src (also known as pp60src) is a non receptor Tyrosine Kinase involved in signal transduction in many biological systems and implicated in the development of human tumors. There are two critical phosphorylation sites of tyrosine on Src, tyrosine 418 and tyrosine 529 (referring to human Src sequence). The tyrosine 418 is located in the catalytic domain and is one of the autophosphorylation sites. Full catalytic activity of Src requires phosphorylation of tyrosine 418. The tyrosine 529 is located near the carboxyl terminus of Src and acts as a negative regulator, in that Src is held in the inactive form through an intramolecular interaction between the SH2 domain and the carboxyl terminus when tyrosine 529 is phosphorylated by Csk. This conformation blocks phosphorylation of tyrosine 418 at the catalytic domain, thereby preventing Src activation. When tyrosine 529 is dephosphorylated, tyrosine 418 can be maximally phosphorylated and Src becomes active. Src is a proto oncogene that may play a role in the regulation of embryonic development and cell growth. Mutations in this gene could be involved in the malignant progression of colon cancer. Immunogen: Synthetic peptide (Human) derived from the region of Src that contains tyrosine 529, based on the human sequence. The sequence is conserved in mouse (tyrosine 534), chicken (tyrosine 527) and frog (tyrosine 525).

Expand 1 Items
Loading...
Anti-EPHA2 Rabbit Polyclonal Antibody

Anti-EPHA2 Rabbit Polyclonal Antibody

Supplier: Bioss

Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis.

Expand 1 Items
Loading...

Anti-BNIP3L Rabbit Polyclonal Antibody

Supplier: Rockland Immunochemical

CCR5 antibody detects a G coupled -protein receptor. Human immunodeficiency virus (HIV) and related virus require coreceptors, in addition to CD4, to infect target cells. Some G protein-coupled receptors including CCR5, CXCR4, CCR3, CCR2b and CCR8 in the chemokine receptor family, and four new human molecules GPR15, STRL33, GPR1 and V28 were recently identified as HIV coreceptors. Among them, CCR5 (CC-CKR-5) is a principal coreceptor for macrophage- and dual-tropic HIV-1 strains fusion and entry of human white blood cells. CCR5 is required for the infection by HIV-1, HIV-2, and SIV. The beta-chemokines RANTES, MIP-alpha and MIP-beta are the ligands for CCR5 and prevent infection by M-tropic HIV-1. CXC5 associates with the surface CD4-gp120 of HIV complex and leads to membrane fusion and virus entry of target cells. The amino-terminal domain and the extracellular loops of CCR5 serve as HIV biding sites. CCR5 messenger RNA is expressed in lymphoid organs and monocytes. Anti-CCR5 antibodies are ideal for investigators involved in Cytokines and Growth Factors and Infectious Disease research.

Expand 1 Items
Loading...
Anti-BRCA2 Rabbit Polyclonal Antibody

Anti-BRCA2 Rabbit Polyclonal Antibody

Supplier: Bioss

Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and DSS1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180).

Expand 1 Items
Loading...

Anti-ATXN1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

The autosomal dominant cerebellar ataxias (ADCA) are a heterogeneous group of neurodegenerative disorders characterized by progressive degeneration of the cerebellum, brain stem and spinal cord. Clinically, ADCA has been divided into three groups: ADCA types I-III. ADCAI is genetically heterogeneous, with five genetic loci, designated spinocerebellar ataxia (SCA) 1, 2, 3, 4 and 6, being assigned to five different chromosomes. ADCAII, which always presents with retinal degeneration (SCA7), and ADCAIII often referred to as the `pure' cerebellar syndrome (SCA5), are most likely homogeneous disorders. Several SCA genes have been cloned and shown to contain CAG repeats in their coding regions. ADCA is caused by the expansion of the CAG repeats, producing an elongated polyglutamine tract in the corresponding protein. The expanded repeats are variable in size and unstable, usually increasing in size when transmitted to successive generations. The function of the ataxins is not known. This locus has been mapped to chromosome 6, and it has been determined that the diseased allele contains41-81 CAG repeats, compared to 6-39 in the normal allele, and is associated with spinocerebellar ataxia type 1 (SCA1). At least two transcript variants encoding the same protein have been found for this gene. [provided by RefSeq].

Expand 1 Items
Loading...
Anti-ATG5 Rabbit Polyclonal Antibody

Anti-ATG5 Rabbit Polyclonal Antibody

Supplier: Bioss

Involved in autophagic vesicle formation. Conjugation with ATG12, through a ubiquitin-like conjugating system involving ATG7 as an E1-like activating enzyme and ATG1 as an E2-like conjugating enzyme, is essential for its function. The ATG12-ATG5 conjugate acts as an E3-like enzyme which is required for lipidation of ATG8 family proteins and their association to the vesicle membranes. Involved in mitochondrial quality control after oxidative damage, and in subsequent cellular longevity. The ATG12-ATG5 conjugate also negatively regulates the innate antiviral immune response by blocking the type I IFN production pathway through direct association with RARRES3 and MAVS. Also plays a role in translation or delivery of incoming viral RNA to the translation apparatus. Plays a critical role in multiple aspects of lymphocyte development and is essential for both B and T lymphocyte survival and proliferation. Required for optimal processing and presentation of antigens for MHC II. Involved in the maintenance of axon morphology and membrane structures, as well as in normal adipocyte differentiation. Promotes primary ciliogenesis through removal of OFD1 from centriolar satellites and degradation of IFT2 via the autophagic pathway. May play an important role in the apoptotic process, possibly within the modified cytoskeleton. Its expression is a relatively late event in the apoptotic process, occurring downstream of caspase activity. Plays a crucial role in IFN-gamma-induced autophagic cell death by interacting with FADD.

Expand 1 Items
Loading...

Anti-AQP7 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Water is a critical component of all living cells. Interestingly, tissue membranes show a great degree of water permeability. Mammalian red cells, renal proximal tubules, and descending thin limb of Henle are extraordinarily permeable to water. Water crosses hydrophobic plasma membranes either by simple diffusion or through a facilitative transport mechanism mediated by special protein "aquaporin". Over the last decade, genes for several members of aquaporin family have been cloned, expressed, and their distribution studied in many tissues. AQP0 or MIP26 (major intrinsic protein 26kD), and Aquaporin 1 (AQP1, purified from red cells) also called CHIP28 (channel forming integral protein, 28kD; 268aa; gene locus 7p14) has been the foundation of the growing family of aquaporin. The lens specific AQP0 represents up to 80% of total lens membrane protein. Defects in MIP26 are cause of autosomal dominant cataract. The cataract Fraser mutation (CATFR or Shriveled) is a transposon induced splicing error that substitutes a long terminal repeat sequence for the C terminus of MIP. The lens opacity mutation (LOP) is an amino acid substitution that inhibits targeting of MIP to the cell membrane.

Expand 1 Items
Loading...

Anti-EPHA2 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis.

Expand 1 Items
Loading...
Anti-CDK6 Rabbit Polyclonal Antibody

Anti-CDK6 Rabbit Polyclonal Antibody

Supplier: Bioss

Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans. May play a role in the centrosome organization during the cell cycle phases (PubMed:23918663).

Expand 1 Items
Loading...

Anti-JIP2 Rabbit Polyclonal Antibody

Supplier: Bioss

c-Jun NH2-terminal kinases (JNKs) are distant members of the MAP kinase family (1). JNK1 is activated by dual phosphorylation at a Thr-Pro-Tyr motif in response to ultraviolet (UV) light, and it functions to phosphorylate c-Jun at amino terminal serine regulatory sites, Ser-63 and Ser-73, resulting in transcriptional activation (2-5). Two additional JNK family members have been identified as JNK2 and JNK3 (3). JIP-1 (for JNK interacting protein-1) has been identified as a cytoplasmic inhibitor of JNK that retains JNK in the cytoplasm, thereby inhibiting JNK-regulated gene expression. Evidence suggests that JNK1 and JNK2 bind to JIP-1 with greater affinity than to ATF-2 and c-Jun, which are targets of the JNK signaling pathway. JIP-1 contains an amino terminal JNK binding domain and a carboxy terminal SH3 domain. ATF-2 and c-Jun also contain the JNK binding domain and are thought to compete with JIP-1 for JNK binding (6). Multiple splice variants if JIP-1, including JIP-1b, JIP-1c (also designated islet-brain 1 or IB-1), JIP-2a, JIP-2b and JIP-3, have been identified in brain (7).

Expand 1 Items
Loading...

Anti-IgG Rabbit Polyclonal Antibody (DL800)

Supplier: Rockland Immunochemical

Conjugated Anti-Monkey IgG (H&L) DyLight™ 800 Conjugated antibody generated in rabbit detects specifically monkey IgG heavy and light chains. Secreted as part of the adaptive immune response by plasma B cells, immunoglobulin G constitutes 75% of serum immunoglobulins. IgG binds to viruses, bacteria, as well as fungi and facilitates their destruction or neutralization via agglutination (and thereby immobilizing them), activation of the compliment cascade, and opsinization for phagocytosis. The whole IgG molecule possesses both the F(c) region, recognized by high-affinity Fc receptor proteins, as well as the F(ab) region possessing the epitope-recognition site. Both heavy and light chains of the antibody molecule are present. This DyLight™800 conjugated anti-Monkey IgG (H&L) secondary antibody is ideal for investigators who routinely perform immunofluorescence, flow cytometry, and more general immunoassays. When choosing a secondary antibody product, consideration must be given to species and immunoglobulin specificity, conjugate type, fragment and chain specificity, level of cross-reactivity, and host-species source and fragment.The emission spectra for this DyLight™ conjugate match the principle output wavelengths of most common fluorescence instrumentation.

Expand 1 Items
Loading...

Pierce™ MS-Compatible Magnetic IP Kit, streptavidin, Thermo Scientific

Supplier: Invitrogen

The Thermo Scientific™ Pierce™ MS-Compatible Magnetic IP Kit (Streptavidin) provides mass spectrometry-friendly reagents and an optimized protocol to enable highly effective and efficient immunoprecipitation and co-immunoprecipitation of target antigens upstream of LC-MS analysis.MS-compatible—reagents directly compatible with in-solution peptide digestion, enriched samples contain minimal detergent residuals detected using LC-MSSensitive—procedure successfully enriches low abundance proteins (low ng range)Low background—binding, wash, and elution buffers optimized to minimize enrichment of background proteinsReduced antibody contamination—antibody biotinylation reduces contamination in the eluate when compared to other IP methodsRobust—procedure and reagents have been robustly tested with numerous targets to ensure consistent enrichment of low abundant proteins (ng range) with at least 2 peptides identified per proteinThe Pierce MS-Compatible Magnetic IP Kit (Streptavidin) uses high-quality Pierce Streptavidin Magnetic Beads and optimized buffers that are compatible with downstream LC-MS sample preparation and analysis

Expand 1 Items
Loading...
Zymoprep™ Yeast Plasmid Miniprep II, Zymo Research

Zymoprep™ Yeast Plasmid Miniprep II, Zymo Research

Supplier: Zymo Research

The Zymoprep™ Yeast Plasmid Miniprep II used for plasmid isolation from S. pombe.

Expand 1 Items
Loading...

Guanidinium hydrochloride ≥99%, white crystalline powder, Ultrapure

Supplier: MP Biomedicals

Guanidine Hydrochloride is a protein denaturant and thus having an important role in molecular weight determinations.
Guanidine Hydrochloride is a strong chaotropic agent useful for the denaturation and subsequent refolding of proteins. This strong denaturant can solubilize insoluble or denatured proteins such as inclusion bodies. This can be used as the first step in refolding proteins or enzymes into their active form. Urea and dithiothreitol (DTT) may also be necessary. Guanidine HCl is used in the isolation of RNA to dissociate the nucleoprotein into its nucleic acid and protein moieties. It is an inhibitor of RNase. Highly concentrated (6 - 8 M) Guanidine HCl solutions are used to denature native globular proteins. It apparently disrupts hydrogen bonds which hold the protein in its unique structure. However, there also is evidence suggesting that guanidine hydrocholoride may disrupt hydrophobic interactions by promoting the solubility of hydrophobic residues in aqueous solutions.

Expand 3 Items
Loading...

Anti-ATF2 Rabbit Polyclonal Antibody

Supplier: Bioss

ATF2 is a member of the ATF/CREB family of basic region leucine zipper DNA binding proteins that regulates transcription by binding to a consensus cAMP response element (CRE) in the promoter of various viral and cellular genes. Many of these genes are important in cell growth and differentiation, and in stress and immune responses. ATF2 is a nuclear protein that binds DNA as a dimer and can form dimers with members of the ATF/CREB and Jun/Fos families. It is a stronger activator as a heterodimer with cJun than as a homodimer. Several isoforms of ATF2 arise by differential splicing. The stable native full length ATF2 is transcriptionally inactive as a result of an inhibitory direct intramolecular interaction of its carboxy terminal DNA binding domain with the amino terminal transactivation domain. Following dimerization ATF2 becomes a short lived protein that undergoes ubiquitination and proteolysis, seemingly in a protein phosphatase-dependent mechanism. Stimulation of the transcriptional activity of ATF2 occurs following cellular stress induced by several genotoxic agents, inflammatory cytokines, and UV irradiation. This activation requires phosphorylation of two threonine residues in ATF2 by both JNK/SAP kinase and p38 MAP kinase. ATF2 is abundantly expressed in brain.

Expand 1 Items
Loading...

Anti-ATF2 Rabbit Polyclonal Antibody

Supplier: Bioss

ATF2 is a member of the ATF/CREB family of basic region leucine zipper DNA binding proteins that regulates transcription by binding to a consensus cAMP response element (CRE) in the promoter of various viral and cellular genes. Many of these genes are important in cell growth and differentiation, and in stress and immune responses. ATF2 is a nuclear protein that binds DNA as a dimer and can form dimers with members of the ATF/CREB and Jun/Fos families. It is a stronger activator as a heterodimer with cJun than as a homodimer. Several isoforms of ATF2 arise by differential splicing. The stable native full length ATF2 is transcriptionally inactive as a result of an inhibitory direct intramolecular interaction of its carboxy terminal DNA binding domain with the amino terminal transactivation domain. Following dimerization ATF2 becomes a short lived protein that undergoes ubiquitination and proteolysis, seemingly in a protein phosphatase-dependent mechanism. Stimulation of the transcriptional activity of ATF2 occurs following cellular stress induced by several genotoxic agents, inflammatory cytokines, and UV irradiation. This activation requires phosphorylation of two threonine residues in ATF2 by both JNK/SAP kinase and p38 MAP kinase. ATF2 is abundantly expressed in brain.

Expand 1 Items
Loading...

Anti-ATF2 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

ATF2 is a member of the ATF/CREB family of basic region leucine zipper DNA binding proteins that regulates transcription by binding to a consensus cAMP response element (CRE) in the promoter of various viral and cellular genes. Many of these genes are important in cell growth and differentiation, and in stress and immune responses. ATF2 is a nuclear protein that binds DNA as a dimer and can form dimers with members of the ATF/CREB and Jun/Fos families. It is a stronger activator as a heterodimer with cJun than as a homodimer. Several isoforms of ATF2 arise by differential splicing. The stable native full length ATF2 is transcriptionally inactive as a result of an inhibitory direct intramolecular interaction of its carboxy terminal DNA binding domain with the amino terminal transactivation domain. Following dimerization ATF2 becomes a short lived protein that undergoes ubiquitination and proteolysis, seemingly in a protein phosphatase-dependent mechanism. Stimulation of the transcriptional activity of ATF2 occurs following cellular stress induced by several genotoxic agents, inflammatory cytokines, and UV irradiation. This activation requires phosphorylation of two threonine residues in ATF2 by both JNK/SAP kinase and p38 MAP kinase. ATF2 is abundantly expressed in brain.

Expand 1 Items
Loading...
Anti-DDX42 Rabbit Polyclonal Antibody

Anti-DDX42 Rabbit Polyclonal Antibody

Supplier: Prosci

DDX42 is a member of the Asp-Glu-Ala-Asp (DEAD) box protein family. Members of this protein family are putative RNA helicases, and are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. DDX42 is a ATP-dependent RNA helicase. DDX42 binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures. It also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein.This gene encodes a member of the Asp-Glu-Ala-Asp (DEAD) box protein family. Members of this protein family are putative RNA helicases, and are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. Two transcript variants encoding the same protein have been identified for this gene.

Expand 1 Items
Loading...

Anti-DAXX Rabbit Polyclonal Antibody

Supplier: Bioss

Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Down-regulates basal and activated transcription. Seems to act as a transcriptional corepressor and inhibits PAX3 and ETS1 through direct protein-protein interaction. Modulates PAX5 activity. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively.

Expand 1 Items
Loading...

Anti-CASP3 Rabbit Polyclonal Antibody

Supplier: Bioss

The caspase family of cysteine proteases play a key role in apoptosis. Caspase 3 is the most extensively studied apoptotic protein among caspase family members. Caspase 3 is synthesized as inactive pro enzyme that is processed in cells undergoing apoptosis by self proteolysis and/or cleavage by other upstream proteases (e.g. Caspases 8, 9 and 10). The processed form of Caspase 3 consists of large (17kDa) and small (12kDa) subunits which associate to form an active enzyme. Caspase 3 is cleaved at Asp28 Ser29 and Asp175 Ser176. The active Caspase 3 proteolytically cleaves and activates other caspases (e.g. Caspases 6, 7 and 9), as well as relevant targets in the cells (e.g. PARP and DFF). Alternative splicing of this gene results in two transcript variants which encode the same protein. In immunohistochemical studies Caspase 3 expression has been shown to be widespread but not present in all cell types (e.g. commonly reported in epithelial cells of skin, renal proximal tubules and collecting ducts). Differences in the level of Caspase 3 have been reported in cells of short lived nature (eg germinal centre B cells) and those that are long lived (eg mantle zone B cells). Caspase 3 is the predominant caspase involved in the cleavage of amyloid beta 4A precursor protein, which is associated with neuronal death in Alzheimer's disease.

Expand 1 Items
Loading...
Anti-ACKR3 Rabbit Polyclonal Antibody

Anti-ACKR3 Rabbit Polyclonal Antibody

Supplier: Bioss

Atypical chemokine receptor that controls chemokine levels and localization via high-affinity chemokine binding that is uncoupled from classic ligand-driven signal transduction cascades, resulting instead in chemokine sequestration, degradation, or transcytosis. Also known as interceptor (internalizing receptor) or chemokine-scavenging receptor or chemokine decoy receptor. Acts as a receptor for chemokines CXCL11 and CXCL12/SDF1. Chemokine binding does not activate G-protein-mediated signal transduction but instead induces beta-arrestin recruitment, leading to ligand internalization and activation of MAPK signaling pathway. Required for regulation of CXCR4 protein levels in migrating interneurons, thereby adapting their chemokine responsiveness. In glioma cells, transduces signals via MEK/ERK pathway, mediating resistance to apoptosis. Promotes cell growth and survival. Not involved in cell migration, adhesion or proliferation of normal hematopoietic progenitors but activated by CXCL11 in malignant hemapoietic cells, leading to phosphorylation of ERK1/2 (MAPK3/MAPK1) and enhanced cell adhesion and migration. Plays a regulatory role in CXCR4-mediated activation of cell surface integrins by CXCL12. Required for heart valve development. Acts as coreceptor with CXCR4 for a restricted number of HIV isolates.

Expand 1 Items
Loading...
Anti-ERBB3 Rabbit Polyclonal Antibody

Anti-ERBB3 Rabbit Polyclonal Antibody

Supplier: Bioss

ErbB3 is a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. ErbB3 is a membrane-bound protein which has a neuregulin binding domain but not an active kinase domain. It can therefore bind this ligand but cannot convey a signal into the cell via protein phosphorylation. However it does form heterodimers with other EGF receptor family members which do have kinase activity. Heterodimerization leads to the activation of pathways which lead to cell proliferation or differentiation. Amplification of this gene and/or overexpression of its protein have been reported in numerous cancers including prostate, bladder and breast tumors. Alternate transcriptional splice variants encoding different isoforms have been characterized. Isoform 2 lacks the intermembrane region and is secreted outside the cell. This form acts to modulate the activity of the membrane-bound form. Additional splice variants have also been reported but they have not been thoroughly characterized. Defects in ERBB3 are the cause of lethal congenital contracture syndrome type 2 (LCCS2); also called Israeli Bedouin multiple contracture syndrome type A. LCCS2 is an autosomal recessive neurogenic form of a neonatally lethal arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord.

Expand 1 Items
Loading...
Anti-Proteasome 20S Core Subunits Rabbit Polyclonal Antibody

Anti-Proteasome 20S Core Subunits Rabbit Polyclonal Antibody

Supplier: Enzo Life Sciences

The proteasome is widely recognised as the central enzyme of non-lysosomal protein degradation. It is responsible for intracellular protein turnover and it is also critically involved in many regulatory processes and, in higher eukaryotes, in antigen processing. The 26S proteasome is the key enzyme of the ubiquitin/ATP-dependent pathway of protein degradation. The catalytic core of this unusually large (2000kDa, 450Å in length) complex is formed by the 20S proteasome, a barrel shaped structure shown by electron microscopy to comprise of four rings each containing seven subunits.

Based on sequence similarity, all fourteen 20S proteasomal subunit sequences may be classified into two groups, α and β, each group having distinct structural and functional roles. The α-subunits comprise the outer rings and the β-subunits the inner rings of the 20S proteasome. Observations of the eukaryotic proteasome and analysis of subunit sequences indicate that each ring contains seven different subunits (α7β7β7α7) with a member of each sub-family represented in each particle. Each subunit is located in a unique position within the α- or β-rings. 120S Proteasomes degrade only unfolded proteins in an energy-independent manner, whereas 26S proteasomes degrade native and ubiquitinylated proteins in an ATP-dependent manner. The native protein substrates are recognised by subunits, some with ATP binding sites, of the outer 19S caps of the 26S proteasome.

Expand 2 Items
Loading...
Anti-VASP Rabbit Polyclonal Antibody

Anti-VASP Rabbit Polyclonal Antibody

Supplier: Enzo Life Sciences

VASP (vasodilator stimulated phosphoprotein) is a proline-rich protein substrate of cAMP- and cGMP-dependent protein kinases. Phosphorylation of VASP at Ser-157 causes a mobility shift in SDS gel electrophoresis from 46 to 50 kDa, which has been used as a convenient marker to monitor cyclic nucleotide-dependent protein kinase activity. VASP is the founding member of the Ena-VASP protein family, comprising the Drosophila protein Enabled (Ena), its mouse homologue Mena (mammalian Enabled), and mouse EVL (Ena-VASP-like protein). With these proteins VASP shares a conserved overall domain organization:
a) the conserved N-terminal Ena-VASP homology domain 1 (EVH1), which mediates binding to a proline-rich motif
b) a more divergent proline-rich central domain (which is responsible for profilin binding)
c) a conserved C-terminal EVH2 domain.

VASP is expressed in a variety of mammalian cell types and tissues. In cultured cells, VASP is associated with focal adhesions, cell-cell contacts, microfilaments, and highly dynamic membrane regions. From in vitro binding data VASP has been suggested to link profilin to zyxin, vinculin, and the Listeria spp. surface protein ActA, respectively. Functional evidence indicates that VASP is a crucial factor involved in the enhancement of actin filament formation and the actin-dependent motility of intracellular bacterial pathogens.

Expand 1 Items
Loading...
Anti-AKT1 Mouse Monoclonal Antibody [clone: 14E5.A2.B2.H9]

Anti-AKT1 Mouse Monoclonal Antibody [clone: 14E5.A2.B2.H9]

Supplier: Rockland Immunochemical

Combo Pack: This primary and secondary antibody pair comes with matched antibody pairs to detect and quantify endogenous protein levels of human AKT1. AKT1 Antibody detects AKT1 which is a component of the PI-3 kinase pathway and is activated by phosphorylation at Ser 473 and Thr 308. AKT is a cytoplasmic protein also known as Protein Kinase B (PKB) and rac (related to A and C kinases). AKT is a key regulator of many signal transduction pathways. AKT Exhibits tight control over cell proliferation and cell viability. Overexpression or inappropriate activation of AKT is noted in many types of cancer. AKT mediates many of the downstream events of PI 3-kinase (a lipid kinase activated by growth factors, cytokines and insulin). PI 3-kinase recruits AKT to the membrane, where it is activated by PDK1 phosphorylation. Once phosphorylated, AKT dissociates from the membrane and phosphorylates targets in the cytoplasm and the cell nucleus. AKT has two main roles: (i) inhibition of apoptosis; (ii) promotion of proliferation. Anti-AKT1 Antibody is ideal for investigators involved in Cell Signaling, Neuroscience and Signal Transduction research.

Expand 1 Items
Loading...
Recommended for You