470213-300

The Science Behind Ballistics and Firearms Lab Activity

Aligned With All Published National Standards

table of contents

overview and materials list	2
standards alignment	3
learning objectives	4
time requirement	4
safety precautions	5
vocabulary	6
background	7
pre-lab questions	14
pre-lab preparation	15
procedure	17
results and analysis	22
assessment	27

overview

In this lab, students will learn background information on different types of firearms, and how a ballistics expert might use that knowledge to assist in crime scene investigations. Students will then use a Vernier caliper, trajectory rods and ballistic blocks to assess the bullets that are provided in this kit. Students will obtain metric data, analyze bullet caliber, and use tools to analyze a "bullet hole". These exercises will help students learn how to analyze damage to a bullet and connect it to a specific caliber firearm.

materials included:

- 1 set of four embedded .45 caliber bullets
- 1 set of four embedded .45 caliber shell casings
- 1 bullet model
- 1 set/8 safety bullets
- 1 set/7 various caliber safety bullets
- 1 set of 4 ballistic blocks
- 4 trajectory rods
- 4 protractors
- 1 laser pointer
- 8 Vernier calipers
- 8 magnifying glasses
- 1 roll string
- 1 set, product literature (Student and Teacher Guides)

materials not provided:

Dissection microscope (optional)

number of uses:

This lab activity is designed for eight groups of students.

Visit wardsci.com for replacement materials.

framework for K-12 science education © 2012

* The Dimension I practices listed below are called out as **bold** words throughout the activity.

10N1	ce and	eering	ices
MEN	Scienc	Engine	Prac

x	Asking questions (for science) and defining problems (for engineering)	х	Use mathematics and computational thinking
x	Developing and using models	X	Constructing explanations (for science) and designing solutions (for engineering)
x	Planning and carrying out investigations	X	Engaging in argument from evidence
x	Analyzing and interpreting data	х	Obtaining, evaluating, and communicating information

DIMENSION 2Cross Cutting
Concepts

X	Patterns	Energy and matter: Flows, cycles, and conservation
x	Cause and effect: Mechanism and explanation	Structure and function
X	Scale, proportion, and quantity	Stability and change
X	Systems and system models	

DIMENSION 3

Core

Concepts

Discipline	Core Idea Focus	
Physical Science	PS1: Matter and Its Interactions	
	PS2: Motion and Stability: Forces and Interactions	
	PS3: Energy	

x Indicates standards covered in activity

next generation science standards © 2013

Middle School Standards Covered	High School Standards Covered
MS.PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.	HS.PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
MS.PS2-1: Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.	HS.PS2-3: Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
MS.PS2-2: Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.	
MS.PS2-4: Construct and present arguments using evidence to support the claims that gravitational interactions are attractive and depend on the masses of interacting objects.	
MS.PS3-1: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.	
MS.PS3-5: Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.	

standards/learning objectives

national science education standards © 1996

Content Standards (K-12)			
	Systems, order, and organization		Evolution and equilibrium
X	Evidence, models, and explanation	Х	Form and Function
X	Constancy, change, and measurement		

Physic	cal Science Standards Middle School	Physi	cal Science Standards High School
Х	Motions and Forces	X	Motions and Forces
X	Transfer of Energy	Х	Interactions of Energy and Matter

x Indicates standards covered in activity

benchmarks for science literacy (AAAS, © 1993)

1. The Nature of Science	1B: Scientific Inquiry	
2. The Nature of Mathematics	2B: Mathematics, Science, and Technology	
	2C: Mathematical Inquiry	
4. The Physical Setting	4E: Energy Transformations	
	4F: Motion	
	4G: Forces of Nature	
11.Common Themes	11A. Systems	
	11B. Models	

activity objectives:

- Conduct comparisons of known and unknown bullets, using a large manipulative.
- Compare bullets and shell casings in question to spent bullets and shell casings from three different firearms to determine which firearm fired the bullet.
- Determine the outer diameter of the bullet head portion of a dummy round in millimeters (metric units), then convert millimeters to inches and express caliber in English units of measurement.
- Measure the trajectory of a projectile that entered a Lucite block mounted to a desktop and/or attached to a wall.

time requirement:

- Part I 20 Minutes
- Part II 30 Minutes
- Part III 15 Minutes
- Part IV 30 Minutes
- Part V 30 Minutes

safety precautions

lab specific safety:

 A laser pointer is used in this activity. NEVER point the laser beam directly at a person or at an angle where it could be reflected into a person's eyes.

general safety:

- Consider establishing a safety contract that students and their parents must read and sign. This is a good way to identify students with allergies (e.g., latex) so that you (and they) will be reminded of specific lab materials that may pose risks to individuals.
- Students should know where all emergency equipment (safety shower, eyewash station, fire extinguisher, fire blanket, first aid kit etc.) is located.
- Require students to remove all dangling jewelry and tie back long hair before they begin.
- Remind students to read all instructions before starting the lab activities, and to ask questions about safety and safe laboratory procedures.

at the end of the lab:

 Remind students to wash their hands thoroughly with soap and water before leaving the laboratory.

